MicroRNA (miRNA) are highly conserved, noncoding small RNA involved in post-transcriptional gene regulation in a variety of biological processes. To elucidate roles of miRNA in bovine muscle type specification and maintenance, we sought to determine differentially expressed miRNA between semitendinosus (STD) and masseter (MS) muscles from 3 Japanese black cattle by massively parallel sequencing. Differential gene expression of myosin heavy chain (MyHC) isoforms confirmed that STD and MS were MyHC-2x- and MyHC-1-abundant muscles, respectively. In total, 192 known miRNA and 20 potential new bovine miRNA were obtained from the sequencing. The differentially expressed miRNA with more than 2-fold difference in each muscle were identified. In particular, miR-196a and miR-885 were exclusively expressed in STD muscle, which was validated by quantitative reverse transcription-PCR (P=0.045 and P<0.001, respectively), whereas a slow type-directing miR-208b was highly expressed in MS compared with STD (false discovery rate<0.05). In addition, 16 potential novel miRNA were mapped and confirmed for their precursor structures by computational analyses. The results of functional annotation combined with in silico target analysis showed that the predicted target genes of miR-196a/b and miR-885 enriched gene ontology (GO) terms related to skeletal system development and regulation of transcription, respectively. Moreover, GO terms enriched from predicted targets miRNA suggested that STD-abundant- and MS-abundant-miRNA were associated with embryonic body planning and organ/tissue pattern formation, respectively. The present results revealed that the differentially expressed miRNA between the STD and MS muscles may play key roles to determine muscle type-specific tissue formation and maintenance in cattle thorough attenuating putative target genes involved in different developmental events.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2527/jas.2012-5371 | DOI Listing |
PLoS One
January 2025
Department of Biochemistry, College of Medicine, Shihezi University, Shihezi, Xinjiang, China.
Long non-coding RNAs (lncRNAs) are among the most abundant types of non-coding RNAs in the genome and exhibit particularly high expression levels in the brain, where they play crucial roles in various neurophysiological and neuropathological processes. Although ischemic stroke is a complex multifactorial disease, the involvement of brain-derived lncRNAs in its intricate regulatory networks remains inadequately understood. In this study, we established a cerebral ischemia-reperfusion injury model using middle cerebral artery occlusion (MCAO) in male Sprague-Dawley rats.
View Article and Find Full Text PDFJ Int Soc Sports Nutr
December 2025
Jiujiang No.1 People's Hospital, Department of Orthopedics, Jiujiang City Key Laboratory of Cell Therapy, Jiujiang, China.
Objective: The aim of this study was to identify the key regulatory mechanisms of cartilage injury and osteoporosis through bioinformatics methods, and to provide a new theoretical basis and molecular targets for the diagnosis and treatment of the disease.
Methods: Microarray data for cartilage injury (GSE129147) and osteoporosis (GSE230665) were first downloaded from the GEO database. Differential expression analysis was applied to identify genes that were significantly up-or down-regulated in the cartilage injury and osteoporosis samples.
Brief Bioinform
November 2024
Department of Automation, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China.
Studying the changes in cellular transcriptional profiles induced by small molecules can significantly advance our understanding of cellular state alterations and response mechanisms under chemical perturbations, which plays a crucial role in drug discovery and screening processes. Considering that experimental measurements need substantial time and cost, we developed a deep learning-based method called Molecule-induced Transcriptional Change Predictor (MiTCP) to predict changes in transcriptional profiles (CTPs) of 978 landmark genes induced by molecules. MiTCP utilizes graph neural network-based approaches to simultaneously model molecular structure representation and gene co-expression relationships, and integrates them for CTP prediction.
View Article and Find Full Text PDFTheor Appl Genet
January 2025
College of Agriculture, State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, China.
QTL mapping of two RIL populations in multiple environments revealed a consistent QTL for bristle length, and combined with RNA-seq, a potential candidate gene influencing bristle length was identified. Foxtail millet bristles play a vital role in increasing yields and preventing bird damage. However, there is currently limited research on the molecular regulatory mechanisms underlying foxtail millet bristle formation, which constrains the genetic improvement and breeding of new foxtail millet varieties.
View Article and Find Full Text PDFArch Microbiol
January 2025
Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, SE 106 91, Sweden.
Bacteria experience a continual array of environmental stresses, necessitating adaptive mechanisms crucial for their survival. Thermophilic bacteria, such as Thermus thermophilus, face constant environmental challenges, particularly high temperatures, which requires robust adaptive mechanisms for survival. Studying these extremophiles provides valuable insights into the intricate molecular and physiological processes used by extremophiles to adapt and survive in harsh environments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!