Motor memory is encoded as a gain-field combination of intrinsic and extrinsic action representations.

J Neurosci

School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts 02138, USA.

Published: October 2012

Actions can be planned in either an intrinsic (body-based) reference frame or an extrinsic (world-based) frame, and understanding how the internal representations associated with these frames contribute to the learning of motor actions is a key issue in motor control. We studied the internal representation of this learning in human subjects by analyzing generalization patterns across an array of different movement directions and workspaces after training a visuomotor rotation in a single movement direction in one workspace. This provided a dense sampling of the generalization function across intrinsic and extrinsic reference frames, which allowed us to dissociate intrinsic and extrinsic representations and determine the manner in which they contributed to the motor memory for a trained action. A first experiment showed that the generalization pattern reflected a memory that was intermediate between intrinsic and extrinsic representations. A second experiment showed that this intermediate representation could not arise from separate intrinsic and extrinsic learning. Instead, we find that the representation of learning is based on a gain-field combination of local representations in intrinsic and extrinsic coordinates. This gain-field representation generalizes between actions by effectively computing similarity based on the (Mahalanobis) distance across intrinsic and extrinsic coordinates and is in line with neural recordings showing mixed intrinsic-extrinsic representations in motor and parietal cortices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3999415PMC
http://dx.doi.org/10.1523/JNEUROSCI.1928-12.2012DOI Listing

Publication Analysis

Top Keywords

intrinsic extrinsic
28
motor memory
8
gain-field combination
8
intrinsic
8
extrinsic
8
representation learning
8
extrinsic representations
8
extrinsic coordinates
8
representations
6
motor
5

Similar Publications

How age affects human hematopoietic stem and progenitor cells and strategies to mitigate HSPC aging.

Exp Hematol

January 2025

State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin, China.. Electronic address:

Hematopoietic stem cells (HSCs) are central to blood formation and play a pivotal role in hematopoietic and systemic aging. With aging, HSCs undergo significant functional changes, such as an increased stem cell pool, declined homing and reconstitution capacity, and skewed differentiation towards myeloid and megakaryocyte/platelet progenitors. These phenotypic alterations are likely due to the expansion of certain clones, known as clonal hematopoiesis (CH), which leads to disrupted hematopoietic homeostasis, including anemia, impaired immunity, higher risks of hematological malignancies, and even associations with cardiovascular disease, highlighting the broader impact of HSC aging on overall health.

View Article and Find Full Text PDF

Introduction: Chondromalacia patella (CMP) is characterized by cartilage degeneration, affects young adults, more women (2:1) and is responsible for 75% of knee pain complaints in the active population. The etiology is multifactorial and may be related to extrinsic factors (trauma and burden) and intrinsic factors (patellar malalignment and quadriceps weakness). Isokinetic dynamometry (ID) can aid in the detection of the causal factors of knee pain related to CMP.

View Article and Find Full Text PDF

Attracting nursing talent to the intensive care unit: A qualitative study on how to create an appealing work environment.

Intensive Crit Care Nurs

January 2025

Departament d'Infermeria Fonamental i Clínica, Faculty of Nursing, Universitat de Barcelona, Carrer de la Feixa Llarga, 08907, L'Hospitalet de Llobregat, Barcelona, Spain.

Introduction And Objective: The global shortage of nurses who want to work in the intensive care unit (ICU) is alarming, putting at risk quality of care and patient safety. With efforts put into engagement strategies, optimized recruitment programmes are scarce, specifically in the ICU setting. The aim of this study is to describe and explore ICU nurses' opinions on their work motivational factors that influenced the decision to work in the ICU setting.

View Article and Find Full Text PDF

The pathophysiology of rotator cuff disease is complex, involving intrinsic and extrinsic factors that contribute to mechanical alterations, inflammation, apoptosis, and neovascularization. These changes result in structural and cellular disruptions, including inflammatory cell infiltration and collagen disorganization. Macrophages have recently gained attention as critical mediators of tissue repair and regeneration.

View Article and Find Full Text PDF

Electric field stimulation directs target-specific axon regeneration and partial restoration of vision after optic nerve crush injury.

PLoS One

January 2025

Department of Ophthalmology, Keck School of Medicine, USC Roski Eye Institute, University of Southern California, Los Angeles, California, United States of America.

Failure of central nervous system (CNS) axons to regenerate after injury results in permanent disability. Several molecular neuro-protective and neuro-regenerative strategies have been proposed as potential treatments but do not provide the directional cues needed to direct target-specific axon regeneration. Here, we demonstrate that applying an external guidance cue in the form of electric field stimulation to adult rats after optic nerve crush injury was effective at directing long-distance, target-specific retinal ganglion cell (RGC) axon regeneration to native targets in the diencephalon.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!