The effects of volatile anesthetics on Ca++ mobilization in rat hepatocytes.

Anesthesiology

Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota 55905.

Published: March 1990

This study provides direct evidence that in hepatocytes, intracellular Ca++ is released from internal stores by halothane, enflurane, and isoflurane. Hepatocytes isolated from rat livers were used fresh or treated with saponin and then incubated in 45Ca++ media. The uptake of 45Ca++ by hepatocytes was maximal following 13-16 min of incubation (untreated or saponin-treated) and the effects of various agents on the release of 45Ca++ was studied following maximal loading. The agents used included halothane, enflurane, isoflurane, and several putative intracellular second messengers. The anesthetics, to various degrees, all stimulated a significant release of 45Ca++ from internal stores at concentrations that were at or less than clinical concentrations. The release of intracellular 45Ca++ by each of the anesthetic agents was dose-dependent with halothane and enflurane being equally potent at concentrations equivalent to 1 MAC exposure. The halothane-induced release was only somewhat suppressed by preincubation in either 2 mM LaCL3 or 10 microM dantrolene, both suggested Ca++ channel blockers. Transient increases in intracellular Ca++ regulates a number of enzyme systems, including glycogenolysis, while prolonged elevation in Ca++ concentrations have been implicated in the mechanism of hepatotoxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00000542-199003000-00019DOI Listing

Publication Analysis

Top Keywords

halothane enflurane
12
intracellular ca++
8
internal stores
8
enflurane isoflurane
8
release 45ca++
8
ca++
5
45ca++
5
effects volatile
4
volatile anesthetics
4
anesthetics ca++
4

Similar Publications

Silylated-acetylated cyclodextrin (CD) derivatives have recently been investigated, via nuclear magnetic resonance (NMR) spectroscopy, as chiral sensors for substrates that are endowed and devoid of fluorine atoms, and the importance of Si-F interaction in the discrimination phenomena has been assessed. Here, the contributions of both superficial interactions and inclusion processes were further evaluated by extending the records to other chiral fluorinated substrates of interest for pharmaceutical applications. Non-equivalences were measured for both the H and F resonances in equimolar mixtures with the CDs; the promising results also supported the use of chiral sensors in -stoichiometric amounts.

View Article and Find Full Text PDF

Variable responses to medications complicates perioperative care. As a potential solution, we evaluated and synthesized pharmacogenomic evidence that may inform anesthesia and pain prescribing to identify clinically actionable drug/gene pairs. Clinical decision-support (CDS) summaries were developed and were evaluated using Appraisal of Guidelines for Research and Evaluation (AGREE) II.

View Article and Find Full Text PDF

Since the advent of nitric oxide, diethyl ether, chloroform and cyclopropane, the greatest advancement in the area of general inhalational anesthetics has been achieved by the introduction of fluorinated anesthetics and the relevant chiral techniques. This progress led to marked decrease in mortality rates in anesthesia. In the group of chiral fluorinated compounds, halothane (Fluotan®), isoflurane (Foran®), desflurane (Supran®) and enflurane (Ehran®) are deployed as volatile anesthetics.

View Article and Find Full Text PDF

Effect of anesthesia on electrocorticography for localization of epileptic focus: Literature review and future directions.

Epilepsy Behav

May 2021

Comprehensive Epilepsy Center, Dept. of Neurology, School of Medicine, Yale University, Yale New Haven Hospital, New Haven, CT, United States; Human Brain Mapping Program, University of Pittsburgh Medical Center, Pittsburgh, PA, United States.

Intraoperative electrocorticography (ECoG) is a useful technique to guide resections in epilepsy surgery and is mostly performed under general anesthesia. In this systematic literature review, we seek to investigate the effect of anesthetic agents on the quality and reliability of ECoG for localization of the epileptic focus. We conducted a systematic search using PubMed and EMBASE until January 2019, aiming to review the effects of anesthesia on ECoG yield.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!