Viperidae snakes containing various venomous proteins also have several anti-toxic proteins in their sera. However, the physiological function of serum protein has been elucidated incompletely. Small serum protein (SSP)-1 is a major component of the SSPs isolated from the serum of a Japanese viper, the habu snake (Trimeresurus flavoviridis). It exists in the blood as a binary complex with habu serum factor (HSF), a snake venom metalloproteinase inhibitor. Affinity chromatography of the venom on an SSP-1-immobilized column identified HV1, an apoptosis-inducing metalloproteinase, as the target protein of SSP-1. Biacore measurements revealed that SSP-1 was bound to HV1 with a dissociation constant of 8.2 × 10⁻⁸ M. However, SSP-1 did not inhibit the peptidase activity of HV1. Although HSF alone showed no inhibitory activity or binding affinity to HV1, the SSP-1-HSF binary complex bound to HV1 formed a ternary complex that non-competitively inhibited the peptidase activity of HV1 with a inhibition constant of 5.1 ± 1.3 × 10⁻⁹ M. The SSP-1-HSF complex also effectively suppressed the apoptosis of vascular endothelial cells and caspase 3 activation induced by HV1. Thus, SSP-1 is a unique protein that non-covalently attaches to HV1 and changes its susceptibility to HSF.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3528002PMC
http://dx.doi.org/10.1093/jb/mvs127DOI Listing

Publication Analysis

Top Keywords

hv1
9
small serum
8
changes susceptibility
8
apoptosis-inducing metalloproteinase
8
metalloproteinase inhibitor
8
habu snake
8
snake trimeresurus
8
trimeresurus flavoviridis
8
serum protein
8
protein ssp-1
8

Similar Publications

Purifying membrane proteins has been the limiting step for studying their structure and function. The challenges of the process include the low expression levels in heterologous systems and the requirement for their biochemical stabilization in solution. The human voltage-gated proton channel (hH1) is a good example of that: the published protocols to express and purify hH1 produce low protein quantities at high costs, which is an issue for systematically characterizing its structure and function.

View Article and Find Full Text PDF

Introduction: Hypervirulent carbapenem-resistant Klebsiella pneumoniae (hv-CRKP) poses an increasing public health risk due to its high treatment difficulty and associated mortality, especially in bone marrow transplant (BMT) patients. The emergence of strains with multiple resistance mechanisms further complicates the management of these infections.

Methods: We isolated and characterized a novel ST11-KL64 hv-CRKP strain from a pediatric bone marrow transplantation patient.

View Article and Find Full Text PDF

The "Ins and Outs and What-Abouts" of H2A.Z: A Tribute to C. David Allis.

J Biol Chem

January 2025

Institute for Genetics, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 58-62, 35390 Giessen, Germany. Electronic address:

In 2023, the brilliant chromatin biologist C. David Allis passed away leaving a large void in the scientific community and broken hearts in his family and friends. With this review, we want to tribute Dave's enduring inspiration by focusing on the histone variant H2A.

View Article and Find Full Text PDF

The human voltage-gated proton channel (H1) provides an efficient proton extrusion pathway from the cytoplasm contributing to the intracellular pH regulation and the oxidative burst. Although its pharmacological inhibition was previously shown to induce cell death in various cell types, no such effects have been examined in polarized macrophages albeit H1 was suggested to play important roles in these cells. This study highlights that 5-chloro-2-guanidinobenzimidazole (ClGBI), the most widely applied H1 inhibitor, reduces the viability of human THP-1-derived polarized macrophages at biologically relevant doses with M1 macrophages being the most, and M2 cells the least sensitive to this compound.

View Article and Find Full Text PDF

Sinomonas gamaensis NEAU-HV1 remodels the IAA14-ARF7/19 interaction to promote plant growth.

New Phytol

December 2024

Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China.

Sinomonas species typically reside in soils or the rhizosphere and can promote plant growth. Sinomonas enrichment in rhizospheric soils is positively correlated with increases in plant biomass. However, the growth promotion mechanisms regulated by Sinomonas remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!