Effects of long-term application of biosolids for mine land reclamation on groundwater chemistry: trace metals.

J Environ Qual

Environmental Monitoring and Research Division, Metropolitan Water Reclamation District of Greater Chicago, Cicero, IL, USA.

Published: December 2012

Data collected for 35 yr from a 1790-ha strip mine reclamation site in Fulton County, Illinois, where biosolids were applied from 1972 to 2004, were used to evaluate the impacts of long-term biosolids application on metal concentrations in groundwater. Groundwater samples were collected between 1972 and 2006 from wells installed in seven strip-mined fields treated with biosolids at cumulative loading rates of 801 to 1815 dry Mg ha and from another seven fields (also strip mined) treated with mineral fertilizer. Samples were collected monthly between 1972 and 1986 and quarterly between 1987 and 2004 and were analyzed for total metals. The concentrations of metals in groundwater were generally below regulatory limits. Lead, Cd, Cu, Cr, Ni, and Hg concentrations in groundwater were similar for the biosolids-amended and fertilizer-treated sites across all sampling intervals. Zinc concentration was increased by biosolids application only for samples collected before the 1993 promulgation of the USEPA 40 CFR Part 503 rule. Iron and Mn were the only metals that were consistently increased after biosolids application; however, Mn concentrations did not exceed the 10 mg L regulatory limits. Zinc, Cu, Cd, Pb, Fe, Al, and Mn concentrations in groundwater decreased with time, coupled with the change from pre-part 503 to post-Part 503 biosolids. The concentrations of other metals, including Ni, Cr, and Hg, did not increase in groundwater with the prolonged biosolids application. The study suggests that the long-term application of biosolids at high loading rates does not result in trace metal pollution of groundwater.

Download full-text PDF

Source
http://dx.doi.org/10.2134/jeq2011.0472DOI Listing

Publication Analysis

Top Keywords

biosolids application
16
concentrations groundwater
12
samples collected
12
biosolids
9
long-term application
8
application biosolids
8
groundwater
8
loading rates
8
concentrations metals
8
regulatory limits
8

Similar Publications

Microbial communities in biosolids-amended soils: A critical review of high-throughput sequencing approaches.

J Environ Manage

January 2025

Commonwealth Scientific and Industrial Research Organisation, Environment Research Unit, Urrbrae, South Australia, Australia.

Sustainable reuse of treated wastewater sludge or biosolids in agricultural production requires comprehensive understanding of their risks and benefits. Microbes are central mediators of many biosolids-associated risks and benefits, however understanding of their responses to biosolids remains minimal. Application of biosolids to soils amounts to a coalescence of two distinct microbial communities adapted to vastly different matrices.

View Article and Find Full Text PDF

Sources and Pathways of PFAS Occurrence in Water Sources: Relative Contribution of Land-Applied Biosolids in an Agricultural Dominated Watershed.

Environ Sci Technol

January 2025

Department of Agronomy, Ecological Sciences & Engineering Interdisciplinary Graduate Program, Purdue University, 915 Mitch Daniels Blvd, West Lafayette, Indiana 47907, United States.

This study evaluated PFAS occurrence in rural well water and surface water relative to land application of biosolids in a tile-drained agriculture-dominated watershed. Spatial data were used to identify potentially vulnerable rural wells based on their proximity to biosolid-permitted land and location with respect to groundwater flow. Water was collected from 103 private wells in Greater Tippecanoe County Indiana and 168 surface water locations within the Region of the Great Bend of the Wabash River watershed.

View Article and Find Full Text PDF

PFAS in agroecosystems: Sources, impacts, and opportunities for mitigating risks to human and ecosystem health.

J Environ Qual

January 2025

Energy and Environmental Sustainability Laboratories, Institute for Energy and the Environment, The Pennsylvania State University, University Park, Pennsylvania, USA.

Concerns regarding per- and polyfluoroalkyl substances (PFAS) and their precursors have driven increased research into their sources, impacts, and mitigation strategies, aiming to reduce their prevalence in the environment. While much of this research has centered on known large sources of PFAS (e.g.

View Article and Find Full Text PDF

Efforts addressing sludge management, food security, and resource recovery have led to novel approaches in these areas. Electrically assisted conversion of sludge stands out as a promising technology for sewage sludge valorization, producing nitrogen and phosphorus-based fertilizers. The adoption of this technology, which could lead to a fertilizer circular economy, holds the potential to catalyze a transformative change in wastewater treatment facilities toward process intensification, innovation, and sustainability.

View Article and Find Full Text PDF

Anaerobic co-digestion is emerging as an option for wastewater biosolids management. Variations in treatment parameters can impact odour emissions and, in turn, odour nuisance reduces community acceptance and alternatives for beneficial reuse of biosolids via land application. This study assessed odour emissions from digested sludge and biosolids resulting from the anaerobic co-digestion of wastewater sludge with beverage rejects (beer and cola) and food wastes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!