Oral delivery of human biopharmaceuticals, autoantigens and vaccine antigens bioencapsulated in plant cells.

Adv Drug Deliv Rev

Department of Molecular Biology and Microbiology, College of Medicine, University of Central Florida, Biomolecular Science Building, Orlando, FL 32816-2364, USA.

Published: June 2013

Among 12billion injections administered annually, unsafe delivery leads to >20million infections and >100million reactions. In an emerging new concept, freeze-dried plant cells (lettuce) expressing vaccine antigens/biopharmaceuticals are protected in the stomach from acids/enzymes but are released to the immune or blood circulatory system when plant cell walls are digested by microbes that colonize the gut. Vaccine antigens bioencapsulated in plant cells upon oral delivery after priming, conferred both mucosal and systemic immunity and protection against bacterial, viral or protozoan pathogens or toxin challenge. Oral delivery of autoantigens was effective against complications of type 1 diabetes and hemophilia, by developing tolerance. Oral delivery of proinsulin or exendin-4 expressed in plant cells regulated blood glucose levels similar to injections. Therefore, this new platform offers a low cost alternative to deliver different therapeutic proteins to combat infectious or inherited diseases by eliminating inactivated pathogens, expensive purification, cold storage/transportation and sterile injections.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3582797PMC
http://dx.doi.org/10.1016/j.addr.2012.10.005DOI Listing

Publication Analysis

Top Keywords

oral delivery
16
plant cells
16
vaccine antigens
8
antigens bioencapsulated
8
bioencapsulated plant
8
plant
5
oral
4
delivery human
4
human biopharmaceuticals
4
biopharmaceuticals autoantigens
4

Similar Publications

Coronaviruses continue to disrupt health and economic productivity worldwide. Porcine epidemic diarrhea virus (PEDV) is a devastating swine disease and SARS-CoV-2 is the latest coronavirus to infect the human population. Both viruses display a similar spike protein on the surface that is a target of vaccine development.

View Article and Find Full Text PDF

Nanosuspension Innovations: Expanding Horizons in Drug Delivery Techniques.

Pharmaceutics

January 2025

Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia.

Nanosuspensions (NS), with their submicron particle sizes and unique physicochemical properties, provide a versatile solution for enhancing the administration of medications that are not highly soluble in water or lipids. This review highlights recent advancements, future prospects, and challenges in NS-based drug delivery, particularly for oral, ocular, transdermal, pulmonary, and parenteral routes. The conversion of oral NS into powders, pellets, granules, tablets, and capsules, and their incorporation into film dosage forms to address stability concerns is thoroughly reviewed.

View Article and Find Full Text PDF

: is the leading cause of chronic gastritis, peptic ulcer, gastric adenocarcinoma, and mucosal-associated lymphoma. Due to the emerging problems with antibiotic treatment against in clinical practice, vaccination has gained more interest. Oral immunization is considered a promising approach for preventing initial colonization of this bacterium in the gastrointestinal tract, establishing a first line of defense at gastric mucosal surfaces.

View Article and Find Full Text PDF

: Tamoxifen (TAM) is an anti-breast cancer drug suffering from acquired resistance development, prompting cancer relapse. Propranolol (PRO)'s repurposing for cancer therapy has gained interest. This work aimed to investigate combined TAM/PRO therapy for potentiating the anti-breast cancer activity of TAM.

View Article and Find Full Text PDF

Amphotericin B Encapsulation in Polymeric Nanoparticles: Toxicity Insights via Cells and Zebrafish Embryo Testing.

Pharmaceutics

January 2025

Programa de Pós-Graduação em Pesquisa Translacional em Fármacos e Medicamentos (PPG-PTFM), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, Brazil.

Amphotericin B (AmB) is a commonly utilized antifungal agent, which is also recommended for the treatment of certain neglected tropical diseases, including leishmaniasis. However, its clinical application is constrained because of its poor oral bioavailability and adverse effects, prompting the investigation of alternative drug delivery systems. Polymeric nanoparticles (PNPs) have gained attention as a potential drug delivery vehicle, providing advantages such as sustained release and enhanced bioavailability, and could have potential as AmB carriers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!