GABA(A) receptor activation in the CA1 area of the dorsal hippocampus impairs consolidation of conditioned contextual fear in C57BL/6J mice.

Behav Brain Res

Behavioral Neuroscience Group, Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, The Netherlands.

Published: February 2013

Local infusion of the GABA(A) receptor agonist muscimol is used for reversible inactivation of septohippocampal brain structures associated with cognitive functions. However, information on the effective duration, affected processes and site(s) of action of muscimol in the hippocampus is lacking. Therefore, the dose- and time-dependent effects of bilateral dorsohippocampal infusion of muscimol (0.01-2.0 μg/mouse) below the CA1 area were examined on processing of fear memory in male C57BL/6J mice. Infusion of muscimol 15 min-6 h but not 9 h or 24 h before training impaired conditioned context-dependent fear tested 24 h or 48 h after training. Post-training infusion of muscimol also impaired context-dependent fear when applied either 4 h or 6 h after training, although with lower efficacy. Muscimol was ineffective when administered immediately, 1 h or 24 h after training. Infusion of muscimol 15 min before training impaired context-dependent fear 4-6 h after training indicating preserved short-term but impaired long-term memory. Regardless of infusion time and dose, muscimol had no effect on tone-dependent (cued) fear memory. The impairment by the fluorescently-labeled muscimol-bodipy (5.3 μg/mouse) were similar to those of an equimolar dose of muscimol (1 μg/mouse). The distribution profile after local infusion indicated that muscimol-bodipy (5.3 μg/mouse) was confined to the CA1 area of the dorsal hippocampus. These results demonstrated that GABA(A) receptor activation in the CA1 area of the dorsal hippocampus causes a long-term memory impairment of conditioned context-dependent fear mediated by a long-lasting (≥6 h) muscimol action most likely affecting consolidation processes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbr.2012.10.027DOI Listing

Publication Analysis

Top Keywords

ca1 area
16
infusion muscimol
16
context-dependent fear
16
gabaa receptor
12
area dorsal
12
dorsal hippocampus
12
muscimol
10
receptor activation
8
activation ca1
8
c57bl/6j mice
8

Similar Publications

Aluminum Induces Neurotoxicity through the MicroRNA-98-5p/Insulin-like Growth Factor 2 Axis.

ACS Chem Neurosci

January 2025

Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China.

Aluminum is a well-known and widely distributed environmental neurotoxin. This study aimed to investigate the effect of miR-98-5p targeting insulin-like growth factor 2 (IGF2) on aluminum neurotoxicity. Thirty-two Sprague-Dawley rats were randomly divided into four groups and administered 0, 10, 20, and 40 μmol/kg maltol aluminum [Al(mal)], respectively.

View Article and Find Full Text PDF

Introduction: Brain damage caused by subarachnoid hemorrhage (SAH) currently lacks effective treatment, leading to stagnation in the improvement of functional outcomes for decades. Recent studies have demonstrated the therapeutic potential of exosomes released from mesenchymal stem cells (MSC), which effectively attenuate neuronal apoptosis and inflammation in neurological diseases. Due to the challenge of systemic dilution associated with intravenous administration, intranasal delivery has emerged as a novel approach for targeting the brain.

View Article and Find Full Text PDF

Oppositional and competitive instigation of hippocampal synaptic plasticity by the VTA and locus coeruleus.

Proc Natl Acad Sci U S A

January 2025

Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum 44780, Germany.

The novelty, saliency, and valency of ongoing experiences potently influence the firing rate of the ventral tegmental area (VTA) and the locus coeruleus (LC). Associative experience, in turn, is recorded into memory by means of hippocampal synaptic plasticity that is regulated by noradrenaline sourced from the LC, and dopamine, sourced from both the VTA and LC. Two persistent forms of synaptic plasticity, long-term potentiation (LTP), and long-term depression (LTD) support the encoding of different kinds of spatial experience.

View Article and Find Full Text PDF

Melatonin attenuates BDE-209-caused spatial memory deficits in juvenile rats through NMDAR-CaMKⅡγ-mediated synapse-to-nucleus signaling.

Food Chem Toxicol

January 2025

Department of Occupational and Environmental Health, School of Public Health, Jinzhou Medical University, Jinzhou, Liaoning, PR China. Electronic address:

Flame retardant polybrominated diphenyl ethers (PBDEs) accumulate in human bodies through food and dust ingestion, and cause neurobehavioral deficits with obscure mechanism. We aimed to investigate NMDAR-CaMKⅡγ-mediated synapse-to-nuclear communication involved in BDE-209-induced cognitive impairment, and alleviation from exogenous melatonin. Decreased NMDAR subunits GluN2A and 2B, autophosphorylation of CaMKⅡα, and postsynaptic GluA1 trafficking were observed in the hippocampus of juvenile rats after maternal BDE-209 exposure.

View Article and Find Full Text PDF

Na-K-ATPase/GLT-1 interaction participates in EGCG protection against cerebral ischemia-reperfusion injury in rats.

Phytomedicine

January 2025

Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Department of Pathophysiology, Neuroscience Research Center, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang 050017, China. Electronic address:

Background: In China, stroke is the primary cause of adult death and disability. Because of the increased rate of blood vessel reperfusion, it is important to prevent cerebral ischemia-reperfusion injury, in which glutamate (Glu) excitotoxicity plays a critical role. The most important Glu transporter, GLT-1, is essential for the regulation of Glu, which is dependent on Na-K-ATPase (NKA)-induced ion concentration gradient differences.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!