Daily, cells incur tens of thousands of DNA lesions caused by endogenous processes. Due to their long-lived nature, adult stem cells may be particularly susceptible to the negative impact of this constant genotoxic stress. Indeed, in murine models of DNA repair deficiencies, there is accumulation of DNA damage in hematopoietic stem cells and premature loss of function. Herein, we demonstrate that mice expressing reduced levels of ERCC1-XPF DNA repair endonuclease (Ercc1-/Δ mice) spontaneously display a progressive decline in the number and function of hematopoietic stem/progenitor cells (HSPCs). This was accompanied by increased cell death, expression of senescence markers, reactive oxygen species, and DNA damage in HSPC populations, illustrating cell autonomous mechanisms that contribute to loss of function. In addition, the bone marrow microenvironment of Ercc1-/Δ mice was not permissive for the engraftment of transplanted normal stem cells. Bones from Ercc1-/Δ mice displayed excessive osteoclastic activity, which alters the microenvironment in a way that is unfavorable to HSPC maintenance. This was accompanied by increased proinflammatory cytokines in the bone marrow of Ercc1-/Δ mice. These data provide novel evidence that spontaneous, endogenous DNA damage, if not repaired, promotes progressive attrition of adult stem cells via both cell autonomous and nonautonomous mechanisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3582850PMC
http://dx.doi.org/10.1002/stem.1261DOI Listing

Publication Analysis

Top Keywords

stem cells
16
ercc1-/Δ mice
16
cell autonomous
12
dna repair
12
dna damage
12
autonomous nonautonomous
8
nonautonomous mechanisms
8
hematopoietic stem/progenitor
8
adult stem
8
loss function
8

Similar Publications

ISCT MSC committee statement on the US FDA approval of allogenic bone-marrow mesenchymal stromal cells.

Cytotherapy

January 2025

Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; Department of Medicine, Division of Hematology, University of Toronto, Toronto, Ontario, Canada. Electronic address:

The December 2024 US Food and Drug Administration (FDA) approval of Mesoblast's Ryoncil (remestemcel-L-rknd)-allogeneic bone marrow mesenchymal stromal cell (MSC(M)) therapy-in pediatric acute steroid-refractory graft-versus-host-disease finally ended a long-lasting drought on approved MSC clinical products in the United States. While other jurisdictions-including Europe, Japan, India, and South Korea-have marketed autologous or allogeneic MSC products, the United States has lagged in its approval. The sponsor's significant efforts and investments, working closely with the FDA addressing concerns regarding clinical efficacy and consistent MSC potency through an iterative process that spanned several years, was rewarded with this landmark approval.

View Article and Find Full Text PDF

Neovascular age-related macular degeneration and diabetic macular edema are leading causes of vision-loss evoked by retinal neovascularization and vascular leakage. The glycoprotein microfibrillar-associated protein 4 (MFAP4) is an integrin αβ ligand present in the extracellular matrix. Single-cell transcriptomics reveal MFAP4 expression in cell-types in close proximity to vascular endothelial cells including choroidal vascular mural cells and retinal astrocytes and Müller cells.

View Article and Find Full Text PDF

One hallmark of cancer is the upregulation and dependency on glucose metabolism to fuel macromolecule biosynthesis and rapid proliferation. Despite significant pre-clinical effort to exploit this pathway, additional mechanistic insights are necessary to prioritize the diversity of metabolic adaptations upon acute loss of glucose metabolism. Here, we investigated a potent small molecule inhibitor to Class I glucose transporters, KL-11743, using glycolytic leukemia cell lines and patient-based model systems.

View Article and Find Full Text PDF

Background: Pathogenic or null mutations in WRN helicase is a cause of premature aging disease Werner syndrome (WS). WRN is known to protect somatic cells including adult stem cells from premature senescence. Loss of WRN in mesenchymal stem cells (MSCs) not only drives the cells to premature senescence but also significantly impairs the function of the stem cells in tissue repair or regeneration.

View Article and Find Full Text PDF

Background: Rex rabbit is famous for its silky and soft fur coat, a characteristic predominantly attributed to its hair follicles. Numerous studies have confirmed the crucial roles of mRNAs and non-coding RNAs (ncRNAs) in regulating key cellular processes such as cell proliferation, differentiation, apoptosis and immunity. However, their involvement in the regulation of the hair cycle in Rex rabbits remains unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!