Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Retrograde leptomeningeal venous drainage (RLVD) in dural arteriovenous fistulas (DAVFs) is associated with intracerebral hemorrhage and nonhemorrhagic neurological deficits or death. Angiographic evidence of RLVD is a definite indication for treatment, but less invasive methods of identifying RLVD are required.
Objective: To evaluate the efficacy of susceptibility-weighted magnetic resonance imaging (SWI) in detecting RLVD in DAVFs.
Methods: We retrospectively identified 17 DAVF patients who had angiographic evidence of RLVD and received treatment. Conventional angiography and SWI were assessed at pretreatment and posttreatment time points. The presence of RLVD on SWI was defined as cortical venous hyperintensity, and the presence of venous congestion on SWI venograms was defined as increased caliber of cortical or medullary veins.
Results: Cortical venous hyperintensity was identified in pretreatment SWI of 15 patients. Cortical venous hyperintensity was absent in early posttreatment SWI, consistent with the absence of RLVD in posttreatment angiography, in all but one of these patients. In 2 patients, cortical venous hyperintensity was identified during follow-up, indicating the recurrence of RLVD. Cortical venous hyperintensity was not identified in the pretreatment SWI of 2 patients despite angiographic evidence of RLVD. Venous congestion was identified in pretreatment SWI venograms of 11 patients and had an appearance similar to that identified from angiography. Venous congestive signs improved over the follow-up period.
Conclusion: The presence of SWI hyperintensity within the venous structure could be a useful indicator of RLVD in DAVF patients. Thus, SWI offers a noninvasive alternative to angiography for the identification of RLVD in pretreated and posttreated DAVF patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1227/NEU.0b013e318276f7cc | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!