Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Multifactorial diseases arise from complex patterns of interaction between a set of genetic traits and the environment. To fully capture the genetic biomarkers that jointly explain the heritability component of a disease, thus, all SNPs from a genome-wide association study should be analyzed simultaneously.
Results: In this paper, we present Bag of Naïve Bayes (BoNB), an algorithm for genetic biomarker selection and subjects classification from the simultaneous analysis of genome-wide SNP data. BoNB is based on the Naïve Bayes classification framework, enriched by three main features: bootstrap aggregating of an ensemble of Naïve Bayes classifiers, a novel strategy for ranking and selecting the attributes used by each classifier in the ensemble and a permutation-based procedure for selecting significant biomarkers, based on their marginal utility in the classification process. BoNB is tested on the Wellcome Trust Case-Control study on Type 1 Diabetes and its performance is compared with the ones of both a standard Naïve Bayes algorithm and HyperLASSO, a penalized logistic regression algorithm from the state-of-the-art in simultaneous genome-wide data analysis.
Conclusions: The significantly higher classification accuracy obtained by BoNB, together with the significance of the biomarkers identified from the Type 1 Diabetes dataset, prove the effectiveness of BoNB as an algorithm for both classification and biomarker selection from genome-wide SNP data.
Availability: Source code of the BoNB algorithm is released under the GNU General Public Licence and is available at http://www.dei.unipd.it/~sambofra/bonb.html.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3439675 | PMC |
http://dx.doi.org/10.1186/1471-2105-13-S14-S2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!