A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Bag of Naïve Bayes: biomarker selection and classification from genome-wide SNP data. | LitMetric

Background: Multifactorial diseases arise from complex patterns of interaction between a set of genetic traits and the environment. To fully capture the genetic biomarkers that jointly explain the heritability component of a disease, thus, all SNPs from a genome-wide association study should be analyzed simultaneously.

Results: In this paper, we present Bag of Naïve Bayes (BoNB), an algorithm for genetic biomarker selection and subjects classification from the simultaneous analysis of genome-wide SNP data. BoNB is based on the Naïve Bayes classification framework, enriched by three main features: bootstrap aggregating of an ensemble of Naïve Bayes classifiers, a novel strategy for ranking and selecting the attributes used by each classifier in the ensemble and a permutation-based procedure for selecting significant biomarkers, based on their marginal utility in the classification process. BoNB is tested on the Wellcome Trust Case-Control study on Type 1 Diabetes and its performance is compared with the ones of both a standard Naïve Bayes algorithm and HyperLASSO, a penalized logistic regression algorithm from the state-of-the-art in simultaneous genome-wide data analysis.

Conclusions: The significantly higher classification accuracy obtained by BoNB, together with the significance of the biomarkers identified from the Type 1 Diabetes dataset, prove the effectiveness of BoNB as an algorithm for both classification and biomarker selection from genome-wide SNP data.

Availability: Source code of the BoNB algorithm is released under the GNU General Public Licence and is available at http://www.dei.unipd.it/~sambofra/bonb.html.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3439675PMC
http://dx.doi.org/10.1186/1471-2105-13-S14-S2DOI Listing

Publication Analysis

Top Keywords

naïve bayes
20
biomarker selection
12
genome-wide snp
12
bonb algorithm
12
bag naïve
8
snp data
8
type diabetes
8
classification
6
bonb
6
bayes
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!