Vasoactive intestinal peptide (VIP) conveys various physiological effects in the digestive tract, nervous and cardiovascular system, airways, reproductive system, endocrine system, and more. A family of specific membrane bound receptors, termed VPAC1, VPAC2, and PAC1, bind VIP and trigger the effects. Many of them are of clinical interest. To date more than two thousand publications suggest the use of VIP in diseases like asthma, erectile dysfunction, blood pressure regulation, inflammation, endocrinology, tumours, etc. Despite this considerable potential, the peptide is not regularly used in clinical settings. A key problem is the short half life of inhaled or systemically administered VIP due to rapid enzymatic degradation. This shortcomings could be overcome with stable derivates or improved pharmacokinetics. A promising strategy is to use biocompatible and degradable depots, to protect the peptide from early degradation and allow for controlled release. This review focuses on aspects of clinical applications of VIP and the idea to use formulations based on biodegradable particles, to constitute a dispersible VIP-depot. Smart particle systems protect the peptide from early degradation, and assist the sustainable cell targeting with VIP for therapeutic or imaging purposes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/187153012803832594 | DOI Listing |
PLoS One
January 2025
School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, China.
Motor dysfunction and muscle atrophy are typical symptoms of patients with spinal cord injury (SCI). Exercise training is a conventional physical therapy after SCI, but exercise intervention alone may have limited efficacy in reducing secondary injury and promoting nerve regeneration and functional remodeling. Our previous research found that intramedullary pressure after SCI is one of the key factors affecting functional prognosis.
View Article and Find Full Text PDFPLoS One
January 2025
Physical Culture Institute Ludong University, City Yantai, Shandong Province, China.
The target of rapamycin(TOR)gene is closely related to metabolism and cellular aging, but it is unclear whether the TOR pathways mediate endurance exercise against the accelerated aging of skeletal muscle induced by high salt intake. In this study, muscular TOR gene overexpression and RNAi were constructed by constructing MhcGAL4/TOR-overexpression and MhcGAL4/TORUAS-RNAi systems in Drosophila. The results showed that muscle TOR knockdown and endurance exercise significantly increased the climbing speed, climbing endurance, the expression of autophagy related gene 2(ATG2), silent information regulator 2(SIR2), and pparγ coactivator 1(PGC-1α) genes, and superoxide dismutases(SOD) activity, but it decreased the expression of the TOR gene and reactive oxygen species(ROS) level, and it protected the myofibrillar fibers and mitochondria of skeletal muscle in Drosophila on a high-salt diet.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Laboratory of Biochemistry and Toxicology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.
Background: Lately, significant attention has been drawn towards the potential efficacy of cholera toxin (CT)-an exotoxin produced by the small intestine pathogenic bacterium Vibrio cholera-in modulating cancer-promoting events. In a recent study, we demonstrated that early-life oral administration of non-pathogenic doses of CT in mice suppressed chemically-induced carcinogenesis in tissues distantly located from the gut. In the mammary gland, CT pretreatment was shown to reduce tumor multiplicity, increase apoptosis and alter the expression of several cancer-related molecules.
View Article and Find Full Text PDFJ Exp Med
March 2025
School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA.
Tissue-resident memory T cells (TRM) provide frontline protection against pathogens and emerging malignancies. Tumor-infiltrating lymphocytes (TIL) with TRM features are associated with improved clinical outcomes. However, the cellular interactions that program TRM differentiation and function are not well understood.
View Article and Find Full Text PDFJ Virol
January 2025
Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.
Unlabelled: Porcine deltacoronavirus (PDCoV) is an enteric pathogen that burdens the global pig industry and is a public health concern. The development of effective antiviral therapies is necessary for the prevention and control of PDCoV, yet to date, there are few studies on the therapeutic potential of PDCoV-neutralizing antibodies. Here, we investigate the therapeutic potential of a novel monoclonal antibody (mAb 4A6) which targets the PDCoV S1 protein and effectively neutralizes PDCoV, both pre- and post-attachment on cells, with IC50 values of 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!