Three discrete organoantimony(III)-containing heteropolytungstates [(PhSb(III))(4)(A-α-Ge(IV)W(9)O(34))(2)](12-) (1), [(PhSb(III))(4)(A-α-P(V)W(9)O(34))(2)](10-) (2), and [{2-(Me(2)NCH(2)C(6)H(4))Sb(III)}(3)(B-α-As(III)W(9)O(33))](3-) (3) have been synthesized in one-pot reactions in aqueous medium using the appropriate lacunary heteropolyanion precursor and organoantimony(III) source. Polyanions 1-3 were isolated as hydrated salts, (NH(4))(12)[(PhSb(III))(4)(A-α-Ge(IV)W(9)O(34))(2)]·20H(2)O (1a), Rb(9)Na[(PhSb(III))(4)(A-α-P(V)W(9)O(34))(2)]·20H(2)O (2a), and Rb(3)[{2-(Me(2)NCH(2)C(6)H(4))Sb(III)}(3)(B-α-As(III)W(9)O(33))]·7H(2)O (3a). The compounds 1a-3a were fully characterized in the solid state using infrared (IR) spectroscopy, single-crystal XRD, and thermogravimetric and elemental analyses. The stability of 1-3 in aqueous solution was confirmed by multinuclear NMR ((1)H, (13)C, (31)P, and (183)W) spectroscopy. Preliminary studies on the biological activity of 1-3 showed that all three compounds might act as potent antimicrobial agents.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic301892sDOI Listing

Publication Analysis

Top Keywords

biological activity
8
organoantimonyiii-containing heteropolytungstates
8
synthesis biological
4
activity organoantimonyiii-containing
4
heteropolytungstates three
4
three discrete
4
discrete organoantimonyiii-containing
4
heteropolytungstates [phsbiii4a-α-geivw9o342]12-
4
[phsbiii4a-α-geivw9o342]12- [phsbiii4a-α-pvw9o342]10-
4
[phsbiii4a-α-pvw9o342]10- [{2-me2nch2c6h4sbiii}3b-α-asiiiw9o33]3-
4

Similar Publications

One of the main difficulties in nanotechnology is the development of an environmentally friendly, successful method of producing nanoparticles from biological sources. Silver-doped zinc oxide nanoparticles (Ag-ZnO NPs), with antibacterial and antioxidant properties, were produced using Adiantum venustum extract as a green technique. Fresh A.

View Article and Find Full Text PDF

HIV OctaScanner: A Machine Learning Approach to Unveil Proteolytic Cleavage Dynamics in HIV-1 Protease Substrates.

J Chem Inf Model

January 2025

State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P.R. China.

The rise of resistance to antiretroviral drugs due to mutations in human immunodeficiency virus-1 (HIV-1) protease is a major obstacle to effective treatment. These mutations alter the drug-binding pocket of the protease and reduce the drug efficacy by disrupting interactions with inhibitors. Traditional methods, such as biochemical assays and structural biology, are crucial for studying enzyme function but are time-consuming and labor-intensive.

View Article and Find Full Text PDF

Cellular forces regulate an untold spectrum of living processes, such as cell migration, gene expression, and ion conduction. However, a quantitative description of mechanical control remains elusive due to the lack of general, live-cell tools to measure discrete forces between biomolecules. Here we introduce a computational pipeline for force measurement that leverages well-defined, tunable release of a mechanically activated small molecule fluorophore.

View Article and Find Full Text PDF

Background And Aim: The high rate of tumor growth results in an increased need for amino acids. As solute carriers (SLC) transporters are capable of transporting different amino acids, cancer may develop as a result of these transporters' over-expression due to their complex formation with other biological molecules. Therefore, this review investigated the role of SLC transporters in the progression of cancer.

View Article and Find Full Text PDF

Background/purpose: Titanium (Ti) is extensively used in dental and orthopedic implants due to its excellent mechanical properties. However, its smooth and biologically inert surface does not support the ingrowth of new bone, and Ti ions may have adverse biological effects. The purpose is to improve the corrosion resistance of titanium and create a 3D structured coating to enhance osseointegration through a very simple and fast surface treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!