Understanding how ligands bind to G-protein coupled receptors (GPCRs) provides insights into a myriad of cell processes and is crucial for drug development. Here we extend a hybrid molecular mechanics/coarse-grained (MM/CG) approach applied previously to enzymes to GPCR/ligand complexes. The accuracy of this method for structural predictions is established by comparison with recent atomistic molecular dynamics simulations on the human β2 adrenergic receptor, a member of the GPCRs superfamily. The results obtained with the MM/CG methodology show a good agreement with previous all-atom classical dynamics simulations, in particular in the structural description of the ligand binding site. This approach could be used for high-throughput predictions of ligand poses in a variety of GPCRs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3477165 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0047332 | PLOS |
J Chem Theory Comput
January 2025
Laboratory of Medicinal Chemistry, Rega Institute for Medicinal Research, Herestraat 49, Box 1030, Leuven B-3000, Belgium.
Synthetic nucleic acids, also defined as xenobiotic nucleic acids (XNAs), opened an avenue to address the limitations of nucleic acid therapeutics and the development of alternative carriers for genetic information in biotechnological applications. Two related XNA systems of high interest are the α-l-threose nucleic acid (TNA) and (3'-2') phosphonomethyl threosyl nucleic acid (tPhoNA), where TNAs show potential in antisense applications, whereas tPhoNAs are investigated for their predisposition toward orthogonal genetic systems. We present predictions on helical models of TNA and tPhoNA chemistry in homoduplexes and in complex with native ribose chemistries.
View Article and Find Full Text PDFJ Mol Model
January 2025
College of Mechanical Engineering, Changzhou University, Changzhou, Jiangsu Province, China.
Context: The flow equations are derived for describing the two-dimensional hybrid molecular-scale and continuum flows in the very small surface separation with inhomogeneous solid surfaces and they can be applied for designing the specific bearings. The aim of the present study is to solve this specific flow problem in engineering with normal computational cost. The flow factor approach model describes the flow of the molecule layer adjacent to the solid surface and the Newtonian fluid model describes the flow of the intermediate continuum fluid.
View Article and Find Full Text PDFChemistry
January 2025
Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Organi, Zhongguancun North First Street 2, 100190, Beijing, CHINA.
The discrete π- stacks of specific lengths and orientation is crucial for understanding the impact of intermolecular interactions on optical or electronic properties of nanographdiynes. We designed and synthesized nanographdiynes modified with bulky rotatable asymmetric substituents. The peripheral substituents with different push-pull electronic properties can induce molecular dipoles perpendicular to nanoGDY π surface with different orientation.
View Article and Find Full Text PDFJ Comput Chem
January 2025
School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, India.
The ensemble properties of a system are obtained by averaging over the properties calculated for the various configurations it can have at a finite temperature and thus cannot be captured by a single molecular structure. Such ensemble properties are often important in material discovery. In designing new materials, the goal is to predict those ensemble structures that display a tailored property.
View Article and Find Full Text PDFBiol Aujourdhui
January 2025
Université de Caen Normandie, CERMN UR4258, Boulevard Becquerel, 14000 Caen, France.
The disruption of proteostasis provides a favourable context for the emergence of therapeutic innovations, in particular by exploiting technologies such as the PROTAC (Proteolysis Targeting Chimera) approach. These technologies aim to selectively target proteins involved in various diseases, including cancer and neurodegenerative diseases, by inducing their specific degradation via the ubiquitin-proteasome system. The PROTAC approach opens new opportunities for restoring altered protein homeostasis and modulating the pathological consequences of proteostasis deregulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!