We demonstrate the fabrication of hybrid nanocomposite electrodes with a combination of SnO(2) nanoparticles (NPs) and conducting multiwalled carbon nanotube (MWCNT) anodes (SnO(2)@CNT) through the direct anchoring of SnO(2) NPs on the surface of electrophoretically pre-deposited MWCNT (EPD-CNT) networks via a metal-organic chemical vapor deposition process. This SnO(2)@CNT nanocomposite displays large reversible capacities of over 780, 510, and 470 mA h g(-1) at 1 C after 100, 500, and 1000 cycles, respectively. This outstanding long-term cycling stability is a result of the uniform distribution of SnO(2) NPs (~8.5 nm), a nanoscale EPD-CNT network with good electrical conductivity, and the creation of open spaces that buffer a large volume change during the Li-alloying/dealloying reaction of SnO(2).

Download full-text PDF

Source
http://dx.doi.org/10.1088/0957-4484/23/46/465402DOI Listing

Publication Analysis

Top Keywords

long-term cycling
8
cycling stability
8
carbon nanotube
8
sno2 nps
8
sno2
5
superior long-term
4
stability sno2
4
sno2 nanoparticle/multiwalled
4
nanoparticle/multiwalled carbon
4
nanotube heterostructured
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!