Medial prefrontal cortex lesions in mice do not impair effort-based decision making.

Neuropharmacology

School of Pharmacy, Royal College of Surgeons in Ireland, 123 St Stephens Green, Dublin 2, Ireland.

Published: February 2013

The function of the medial prefrontal cortex has previously been determined in the rat to play an important role in effort-based decision making and this, along with functions of other areas, has been assumed largely, to hold true in all rodents. In this study, we attempted to replicate this result in mice and to develop a model for effort-based decision making that could be useful for the study of neurological conditions. Mice were trained on a cost-benefit T-maze paradigm, whereby they chose between a low reward with little effort needed to obtain it or a higher reward, which required increased effort. Following training, the medial prefrontal cortex was lesioned. After surgery, contrary to earlier published rat studies, the performance of the mice did not change. In previous studies, prefrontal cortex lesioned rats chose the low effort/low reward option, but lesioned mice continued to select the high reward/high effort option. However, the other results are in line with previous mouse studies in both the extent of pathology and anxiety-like behaviour. These results illustrate a difference in the functioning of the prefrontal cortex between rats and mice and offer a word of caution on the interpretation of data from studies that employ different species.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuropharm.2012.10.005DOI Listing

Publication Analysis

Top Keywords

prefrontal cortex
20
medial prefrontal
12
effort-based decision
12
decision making
12
chose low
8
cortex lesioned
8
mice
6
cortex
5
cortex lesions
4
lesions mice
4

Similar Publications

Shaping the structural dynamics of motor learning through cueing during sleep.

Sleep

January 2025

UR2NF-Neuropsychology and Functional Neuroimaging Research Unit affiliated at CRCN - Centre for Research in Cognition and Neurosciences and UNI - ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium.

Enhancing the retention of recent memory traces through sleep reactivation is possible via Targeted Memory Reactivation (TMR), involving cueing learned material during post-training sleep. Evidence indicates detectable short-term microstructural changes in the brain within an hour after motor sequence learning, and post-training sleep is believed to contribute to the consolidation of these motor memories, potentially leading to enduring microstructural changes. In this study, we explored how TMR during post-training sleep affects performance gains and delayed microstructural remodeling, using both standard Diffusion Tensor Imaging (DTI) and advanced Neurite Orientation Dispersion & Density Imaging (NODDI).

View Article and Find Full Text PDF

The early prediction of Alzheimer's disease (AD) risk in healthy individuals remains a significant challenge. This study investigates the feasibility of task-state EEG signals for improving detection accuracy. Electroencephalogram (EEG) data were collected from the Multi-Source Interference Task (MSIT) and Sternberg Memory Task (STMT).

View Article and Find Full Text PDF

Neuroinflammatory Loop in Schizophrenia, Is There a Relationship with Symptoms or Cognition Decline?

Int J Mol Sci

January 2025

Departamento de Ciencias Biológicas y Químicas, Facultad De Medicina y Ciencia, Universidad San Sebastián, Sede Tres Pascualas Lientur 1457, Concepción 4080871, Chile.

Schizophrenia (SZ), a complex psychiatric disorder of neurodevelopment, is characterised by a range of symptoms, including hallucinations, delusions, social isolation and cognitive deterioration. One of the hypotheses that underlie SZ is related to inflammatory events which could be partly responsible for symptoms. However, it is unknown how inflammatory molecules can contribute to cognitive decline in SZ.

View Article and Find Full Text PDF

To elucidate the potential roles of presynaptic and postsynaptic serotonergic activity in impulsivity traits, we investigated the relationship between self-reported impulsiveness and serotonin transporter (5-HTT) and 5-HT2A receptors in healthy individuals. In this study, 26 participants completed 3-Tesla magnetic resonance imaging and positron emission tomography with [C]DASB and [C]MDL100907. To quantify 5-HTT and 5-HT2A receptor availability, the binding potential (BP) of [C]DASB and [C]MDL100907 was derived using the simplified reference tissue model with cerebellar gray matter as the reference region.

View Article and Find Full Text PDF

Background: Epidemiological and genetic studies have elucidated associations between antihypertensive medication and Alzheimer's disease (AD), with the directionality of these associations varying upon the specific class of antihypertensive agents.

Methods: Genetic instruments for the expression of antihypertensive drug target genes were identified using expression quantitative trait loci (eQTL) in blood, which are associated with systolic blood pressure (SBP). Exposure was derived from existing eQTL data in blood from the eQTLGen consortium and in the brain from the PsychENCODE and subsequently replicated in GTEx V8 and BrainMeta V2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!