The human parathyroid hormone type 2 receptor (PTH2R) is activated by PTH and by tuberoinfundibular peptide of 39 residues (TIP39), the latter likely acting as its natural ligand. Although the receptor is expressed at highest levels in the nervous system, we have observed that both PTH2R and TIP39 are expressed in the newborn mouse growth plate, with the receptor localizing in the resting zone and the ligand TIP39 localizing exclusively in prehypertrophic and hypertrophic chondrocytes. To address the role of PTH2R in postnatal skeletal growth and development, Col2a1-hPTH2R (PTH2R-Tg) transgenic mice were generated. The mice were viable and of nearly normal size at birth. Expression of the transgene in the growth plate was limited to chondrocytes. We found that chondrocyte proliferation was decreased, as determined by in vivo BrdU labeling of proliferating chondrocytes and CDK4 and p21 expression in the growth plate of Col2a1-hPTH2R transgenic mice. Similarly, the differentiation and maturation of chondrocytes was delayed, as characterized by decreased Sox9 expression and weaker immunostaining for the chondrocyte differentiation markers collagen type II and type X and proteoglycans. As well, there was altered expression of Gdf5, Wdr5, and β-catenin, factors implicated in chondrocyte maturation, proliferation, and differentiation.These effects impacted on the process of endochondral ossification, resulting in delayed formation of the secondary ossification center, and diminished trabecular bone volume. The findings substantiate a role for PTH2R signaling in postnatal growth plate development and subsequent bone mass acquisition.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3532463 | PMC |
http://dx.doi.org/10.1152/ajpendo.00254.2012 | DOI Listing |
Elife
January 2025
Instituto Gulbenkian de Ciência, Rua da Quinta Grande, Oeiras, Portugal.
During the trunk to tail transition the mammalian embryo builds the outlets for the intestinal and urogenital tracts, lays down the primordia for the hindlimb and external genitalia, and switches from the epiblast/primitive streak (PS) to the tail bud as the driver of axial extension. Genetic and molecular data indicate that Tgfbr1 is a key regulator of the trunk to tail transition. Tgfbr1 has been shown to control the switch of the neuromesodermal competent cells from the epiblast to the chordoneural hinge to generate the tail bud.
View Article and Find Full Text PDFPlant Dis
January 2025
Hebei Academy of Agricultural and Forestry Sciences, Plant Protection Institute, 437 Dongguan Street, Baoding, Hebei, China, 071000.
Strawberry () is an important economic crop in Hebei, China. In May 2023, root rot was observed in strawberry plantations (cultivar 'Benihoppe') in Shijiazhuang (37°57'23″N, 115°16'34″E), Hebei, China. The incidence of the disease reached up to 30% in the field.
View Article and Find Full Text PDFGenes Dis
May 2025
Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
JBMR Plus
February 2025
Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, 43210, United States.
Hypophosphatasia (HPP) is an inherited error in metabolism resulting from loss-of-function variants in the gene, which encodes tissue-nonspecific alkaline phosphatase (TNAP). TNAP plays a crucial role in biomineralization of bones and teeth, in part by reducing levels of inorganic pyrophosphate (PP), an inhibitor of biomineralization. HPP onset in childhood contributes to rickets, including growth plate defects and impaired growth.
View Article and Find Full Text PDFBioresour Technol
January 2025
Engineering Research Center of Watershed Carbon Neutrality of Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources and Environment, Nanchang University, Nanchang 330031, PR China; College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China. Electronic address:
This study investigates the photoinduction techniques for the maximization of astaxanthin production in Chromochloris zofingiensis following heterotrophic growth. Leveraging blue light, this study enhanced carbon allocation by suppressing the tricarboxylic acid cycle and activating the methylerythritol phosphate and pentose phosphate pathways to facilitate astaxanthin accumulation. Under blue light, an astaxanthin content of 5.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!