A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Influence of activated charcoal on desorption kinetics and biodegradation of phenanthrene in soil. | LitMetric

The observed strong sorption of polycyclic aromatic hydrocarbons (PAHs) to black carbon (BC) presents potential implications for PAH bioaccessibility in soils. The effects of BC on the desorption kinetics and mineralization of phenanthrene in four soils was investigated after 1, 25, 50, and 100 d soil-PAH contact time, using sequential hydroxypropyl-β-cyclodextrin (HPCD) extractions in soils amended with 0, 0.1, 1, and 5% (dry wt. soil) activated charcoal (AC, a form of BC). The rapidly (%F(rap)) and slowly (%F(slow)) desorbing phenanthrene fractions and their rate constants were determined using a first-order two-compartment (biphasic) desorption model. A minimum 7.8-fold decrease in %F(rap) occurred when AC was increased from 0 to 5%, with a corresponding increase in %F(slow). Desorption rate constants followed the progression k(rap) (% h(-1)) > k(slow) (% h(-1)) and were in the order of 10(-1) to 10(-2) and 10(-3) to 10(-4), respectively. Linear regressions between %F(rap) and the fractions degraded by a phenanthrene-degrading inoculum (%F(min)) indicated that slopes did not approximate 1 at concentrations greater than 0% AC; %F(min) often exceeded %F(rap), indicating a fraction of sorbed phenanthrene (%F(slow)) remained microbially accessible. Therefore, HPCD-desorption kinetics alone may not be an adequate basis for the prediction of the bioaccessibility of PAHs to microorganisms or bioremediation potential in AC-amended soils.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es3025098DOI Listing

Publication Analysis

Top Keywords

activated charcoal
8
desorption kinetics
8
rate constants
8
influence activated
4
desorption
4
charcoal desorption
4
kinetics biodegradation
4
phenanthrene
4
biodegradation phenanthrene
4
phenanthrene soil
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!