Neuronal nicotinic receptors (nAChRs) belong to the Cys-loop family of ligand-gated ion channels and are formed from five subunits either as homologous or heterologous, oligomeric receptors, and are of interest as targets for treatment of a variety of central and peripheral nervous system disorders. Using a model of the homopentameric α7 nAChR extracellular region derived from the homologous acetylcholine binding protein (AChBP) from Aplysia California, binding modes of structurally diverse, high affinity α7 ligands were examined by docking to the orthosteric ligand binding domain. While all α7 ligands show similar interactions between the essential positively charged cationic center of the ligand and αTRP147 of the receptor (i.e., hydrogen bond to the tryptophan backbone carbonyl and cation-π interaction), docked poses of various ligands show the potential to interact with three additional regions within the binding domain, identified as regions 1, 2, and 3. Region 1 is located in the vicinity of Loop-E, involves ligand-protein interactions via a network of water-mediated hydrogen bonds, and is analogous to the region where pyridinyl groups are located in many of the AChBP-nicotinic ligand cocrystal structures. Ligands interacting with region 2 probe an area that spans from Loop-E to Loops-D and -F and may contribute to α7-selectivity over other nAChR subtypes. Several high affinity α7 ligands show strong interactions in this region. Region 3 is located near Loop-F of the protein and is analogous to an area involved in binding of an active metabolite derived from DMXBA, in an AChBP cocrystal structure. It appears that π-π interactions contribute to binding affinities of α7 nAChR ligands in this latter region, and further, this region may also contribute to α7-selectivity over other nAChR subtypes. Analysis of the resulting poses suggests that compounds with high α7 binding affinity do not require interactions across all regions simultaneously, but that interactions in multiple regions may enhance ligand binding and increase selectivity. Our results provide insight for further development of selective α7 nAChR ligands and may prove useful for the design of novel scaffolds for specific nicotinic therapeutic agents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ci3001953 | DOI Listing |
J Taibah Univ Med Sci
December 2024
Universitas Nasional, Department of Biology, South Jakarta, Indonesia.
Objectives: Dementia, a growing concern globally, affects more than 55 million people-a number projected to rise to 152 million by 2050. Current medications target Alzheimer's disease, the most prevalent form of dementia. This study investigated L.
View Article and Find Full Text PDFActa Pharm Sin B
December 2024
State Key Laboratory of Cellular Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Science, Xiamen University, Xiamen 361102, China.
The orphan nuclear receptor Nur77 is emerging as an attractive target for cancer therapy, and activating Nur77's non-genotypic anticancer function has demonstrated strong therapeutic potential. However, few Nur77 site B ligands have been identified as excellent anticancer compounds. There are no co-crystal structures of effective anticancer agents at Nur77 site B, which greatly limits the development of novel Nur77 site B ligands.
View Article and Find Full Text PDFActa Pharm Sin B
December 2024
State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
Accurate receptor/ligand binding free energy calculations can greatly accelerate drug discovery by identifying highly potent ligands. By simulating the change from one compound structure to another, the relative binding free energy (RBFE) change can be calculated based on the theoretically rigorous free energy perturbation (FEP) method. However, existing FEP-RBFE approaches may face convergence challenges due to difficulties in simulating non-physical intermediate states, which can lead to increased computational costs to obtain the converged results.
View Article and Find Full Text PDFCurr Mol Pharmacol
January 2025
Medical and Pharmaceutical Biotechnology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco A.C., 44270, Guadalajara, Jalisco, Mexico.
Background: Androgen receptor mutations, particularly T877A and W741L, promote prostate cancer (PCa). The main therapies against PCa use androgen receptor (AR) antagonists, including Bicalutamide; but these drugs lose their effectiveness over time. Chrysin is a flavonoid with several biological activities, including antitumoral properties; however, its potential as an antiandrogen must be explored.
View Article and Find Full Text PDFCurr Org Synth
January 2025
Department of Chemistry, GITAM School of Science, GITAM (Deemed to be University), Hyderabad, Telangana, 502329, India.
Introduction: The origin, synthesis, characterization and docking studies of (Z)-7-((1R,2R,3R,5S)-3,5-dihydroxy-2-((R,1E,4E)-3-hydroxy-5-phenylpenta-1,4-dien-1-yl)cyclopentyl)-N-ethylhept-5-enamide, an impurity generated in the preparation of an anti-glaucoma agent-Bimatoprost has been described.
Methods: This impurity was controlled by employing 30% Pd/C, and the impurity level was brought to the permissible level, i.e.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!