Intrinsic inter- and intraspecific competition in parasitoid wasps.

Annu Rev Entomol

Department of Terrestrial Ecology, Netherlands Institute of Ecology, 6708 PB Wageningen, The Netherlands.

Published: June 2013

Immature development of parasitoid wasps is restricted to resources found in a single host that is often similar in size to the adult parasitoid. When two or more parasitoids of the same or different species attack the same host, there is competition for monopolization of host resources. The success of intrinsic competition differs between parasitoids attacking growing hosts and parasitoids attacking paralyzed hosts. Furthermore, the evolution of gregarious development in parasitoids reflects differences in various developmental and behavioral traits, as these influence antagonistic encounters among immature parasitoids. Fitness-related costs (or benefits) of competition for the winning parasitoid reveal that time lags between successive attacks influence the outcome of competition. Physiological mechanisms used to exclude competitors include physical and biochemical factors that originate with the ovipositing female wasp or her progeny. In a broader multitrophic framework, indirect factors, such as plant quality, may affect parasitoids through effects on immunity and nutrition.

Download full-text PDF

Source
http://dx.doi.org/10.1146/annurev-ento-120811-153622DOI Listing

Publication Analysis

Top Keywords

parasitoid wasps
8
parasitoids attacking
8
parasitoids
6
competition
5
intrinsic inter-
4
inter- intraspecific
4
intraspecific competition
4
parasitoid
4
competition parasitoid
4
wasps immature
4

Similar Publications

In modern agriculture, control of insect pests is achieved by using insecticides that can also have lethal and sublethal effects on beneficial non-target organisms. Here, we investigate acute toxicity and sublethal effects of four insecticides on the males' sex pheromone response and the female host finding ability of the Drosophila parasitoid Leptopilina heterotoma. The nicotinic acetylcholine receptor antagonists acetamiprid, flupyradifurone and sulfoxaflor, as well as the acetylcholinesterase inhibitor dimethoate were applied topically as acetone solutions.

View Article and Find Full Text PDF

Parasitoid wasp venoms degrade imaginal discs for successful parasitism.

Sci Adv

January 2025

Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan.

Article Synopsis
  • Parasitoid wasps, a highly diverse group of animals, use their venoms to manipulate the physiology of host larvae for their benefit.
  • Researchers discovered that a specific wasp can cause the death and dysfunction of its host's tissue precursors, a process called imaginal disc degradation (IDD).
  • The study identified two venom proteins crucial for IDD, showing how the wasp's venom strategically ensures the host grows but inhibits its transformation into adulthood.
View Article and Find Full Text PDF

[The role of volatile organic compounds in plant-insect communication].

Biol Aujourdhui

January 2025

Sorbonne Université, Institut d'Écologie et des Sciences de l'Environnement de Paris, 4 place Jussieu, 75005 Paris, France - Institut Universitaire de France, Paris, France.

Insects and flowering plants are the most abundant and diverse multicellular organisms on Earth, accounting for 75% of known species. Their evolution has been largely interdependent since the so-called Angiosperm Terrestrial Revolution (100-50 Mya), when the explosion of plant diversity stimulated the evolution of pollinating and herbivorous insects. Plant-insect interactions rely heavily on chemical communication via volatile organic compounds (VOCs).

View Article and Find Full Text PDF

(Hymenoptera: Aphelinidae) is recorded here for the first time in Italy as a parasitoid of the whitefly (Hemiptera: Aleyrodidae), one of the most invasive alien pests of exotic species. originating from the Oriental region, has established a global presence. Monitoring of the whitefly and its parasitoids was conducted in the southern areas of Italy, providing crucial insights into their distribution and interactions.

View Article and Find Full Text PDF

The roles of viruses in tephritid pest multitrophic interactions and an outlook for biological control.

Curr Opin Insect Sci

January 2025

Department of Entomology & Plant Pathology, University of Tennessee, Knoxville, USA. Electronic address:

Tephritid fruit fly pests remain a considerable problem for agricultural fruit production around the world. New control methods that do not rely on synthetic insecticides are increasingly desirable to diversify tephritid pest management programs. Biological control through the release of parasitoid wasps has historically provided effective suppression of fruit fly pests, although molecular factors that influence the success of fruit fly parasitoids are understudied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!