Seed dispersal by a captive corvid: the role of the 'Alalā (Corvus hawaiiensis) in shaping Hawai'i's plant communities.

Ecol Appl

Department of Fish, Wildlife, and Conservation Biology, Colorado State University, 1474 Campus Delivery, Fort Collins, Colorado 80523, USA.

Published: September 2012

Species loss can lead to cascading effects on communities, including the disruption of ecological processes such as seed dispersal. The endangered 'Alalā (Corvus hawaiiensis), the largest remaining species of native Hawaiian forest bird, was once common in mesic and dry forests on the Big Island of Hawai'i, but today it exists solely in captivity. Prior to its extinction in the wild, the 'Alalā may have helped to establish and maintain native Hawaiian forest communities by dispersing seeds of a wide variety of native plants. In the absence of 'Alalā, the structure and composition of Hawai'i's forests may be changing, and some large-fruited plants may be dispersal limited, persisting primarily as ecological anachronisms. We fed captive 'Alalā a variety of native fruits, documented behaviors relating to seed dispersal, and measured the germination success of seeds that passed through the gut of 'Alalā relative to the germination success of seeds in control groups. 'Alalā ate and carried 14 native fruits and provided germination benefits to several species by ingesting their seeds. Our results suggest that some plants rely heavily on 'Alalā for these services. In captivity, juvenile birds displayed seed dispersal behaviors more often than adult birds for most fruiting plants in our study. We introduced captive 'Alalā to two large-fruited, dry-forest plants, not previously recorded as 'Alalā food resources, but which may once have been part of their natural diet. The seed dispersal behavior that 'Alalā displayed toward these species supports the inclusion of dry and mesic forests in 'Alalā habitat restoration plans and adds weight to the idea that plant dispersal limitation may contribute to the rarity of these plants. Our study provides evidence that 'Alalā have the capacity to play a vital role in maintaining the diversity of fruiting plants in native Hawaiian forests through seed dispersal and enhanced seed germination, thus adding greater urgency to efforts to restore 'Alalā to their former range.

Download full-text PDF

Source
http://dx.doi.org/10.1890/11-1613.1DOI Listing

Publication Analysis

Top Keywords

seed dispersal
24
'alalā
14
native hawaiian
12
'alalā corvus
8
corvus hawaiiensis
8
hawaiian forest
8
variety native
8
captive 'alalā
8
native fruits
8
germination success
8

Similar Publications

Life has existed on Earth for most of the planet's history, yet major gaps and unresolved questions remain about how it first arose and persisted. Early Earth posed numerous challenges for life, including harsh and fluctuating environments. Today, many organisms cope with such conditions by entering a reversible state of reduced metabolic activity, a phenomenon known as dormancy.

View Article and Find Full Text PDF

Background: Fruits, with their diverse shapes, colors, and flavors, represent a fascinating aspect of plant evolution and have played a significant role in human history and nutrition. Understanding the origins and evolutionary pathways of fruits offers valuable insights into plant diversity, ecological relationships, and the development of agricultural systems. Arabidopsis thaliana (Brassicaceae, core eudicot) and Eschscholzia californica (California poppy, Papaveraceae, sister group to core eudicots) both develop dry dehiscent fruits, with two valves separating explosively from the replum-like region upon maturation.

View Article and Find Full Text PDF

Urbanization greatly impacts both the diversity of soil seed banks and the spatial dynamics of species. These seed banks serve as a window into the ecological history and potential for recovery in urban wastelands, which are continually evolving due to urbanization. In this study, we selected 24 plots along urban-rural gradients in Shanghai, China.

View Article and Find Full Text PDF

Background And Aims: Seed dispersal impacts plant fitness by shaping the habitat and distribution of offspring, influencing population dynamics and spatial genetic diversity. Whether the evolution of dispersal strategies varies across herbaceous life forms (annual, perennial, clonal) is inconclusive. This study examines how seed dispersal strategies vary between annual and perennial populations of Mimulus guttatus (syn.

View Article and Find Full Text PDF

Management strategies, such as assisted gene flow, can increase resilience to climate change in tree populations. Knowledge of evolutionary history and genetic structure of species are needed to assess the risks and benefits of different strategies. , or Island Oak, is a rare oak restricted to six Channel Islands in California, United States, and Baja California, Mexico.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!