Miniaturized mass-spectrometry-based analysis system for fully automated examination of conditioned cell culture media.

Int J Proteomics

Department of Biotechnology, Netherlands Proteomics Centre, Delft University of Technology, Julianalaan 67, 2628BC Delft, The Netherlands ; Institute of Sensor and Actuator Systems, Vienna University of Technology, Gusshausstrasse 27-29/E366, 1040 Vienna, Austria.

Published: October 2012

We present a fully automated setup for performing in-line mass spectrometry (MS) analysis of conditioned media in cell cultures, in particular focusing on the peptides therein. The goal is to assess peptides secreted by cells in different culture conditions. The developed system is compatible with MS as analytical technique, as this is one of the most powerful analysis methods for peptide detection and identification. Proof of concept was achieved using the well-known mating-factor signaling in baker's yeast, Saccharomyces cerevisiae. Our concept system holds 1 mL of cell culture medium and allows maintaining a yeast culture for, at least, 40 hours with continuous supernatant extraction (and medium replenishing). The device's small dimensions result in reduced costs for reagents and open perspectives towards full integration on-chip. Experimental data that can be obtained are time-resolved peptide profiles in a yeast culture, including information about the appearance of mating-factor-related peptides. We emphasize that the system operates without any manual intervention or pipetting steps, which allows for an improved overall sensitivity compared to non-automated alternatives. MS data confirmed previously reported aspects of the physiology of the yeast-mating process. Moreover, matingfactor breakdown products (as well as evidence for a potentially responsible protease) were found.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3471440PMC
http://dx.doi.org/10.1155/2012/290457DOI Listing

Publication Analysis

Top Keywords

fully automated
8
cell culture
8
yeast culture
8
culture
5
miniaturized mass-spectrometry-based
4
mass-spectrometry-based analysis
4
system
4
analysis system
4
system fully
4
automated examination
4

Similar Publications

The radiotracer [F]JK-PSMA-7, a prostate cancer imaging agent for positron emission tomography (PET), was previously synthesized by indirect radiofluorination using an F-labeled active ester as a prosthetic group, which had to be isolated and purified before it could be linked to the pharmacologically active Lys-urea-Glu motif. Although this procedure could be automated on two-reactor modules like the GE TRACERLab FX2N (FXN) to afford the tracer in modest radiochemical yields (RCY) of 18-25%, it is unsuitable for cassette-based systems with a single reactor. To simplify implementation on an automated synthesis module, the radiosynthesis of [F]JK-PSMA-7 was devised as a one-pot, two-step reaction.

View Article and Find Full Text PDF

Accurately predicting the remaining useful life (RUL) is crucial for ensuring the safety and reliability of aircraft engine operation. However, aircraft engines operate in harsh conditions, with the characteristics of high speed, high temperature, and high load, resulting in high-dimensional and noisy data. This makes feature extraction inadequate, leading to low accuracy in the prediction of the RUL of aircraft engines.

View Article and Find Full Text PDF

Field implementations of fully underground sensor networks face many practical challenges that have limited their overall adoption. Power management is a commonly cited issue, as operators are required to either repeatedly excavate batteries for recharging or develop complex underground power infrastructures. Prior works have proposed wireless inductive power transfer (IPT) as a potential solution to these power management issues, but misalignment is a persistent issue in IPT systems, particularly in applications involving moving vehicles or obscured (e.

View Article and Find Full Text PDF

Wheat is a globally cultivated cereal crop with substantial protein content present in its seeds. This research aimed to develop robust methods for predicting seed protein concentration in wheat seeds using bench-top hyperspectral imaging in the visible, near-infrared (VNIR), and shortwave infrared (SWIR) regions. To fully utilize the spectral and texture features of the full VNIR and SWIR spectral domains, a computer-vision-aided image co-registration methodology was implemented to seamlessly align the VNIR and SWIR bands.

View Article and Find Full Text PDF

Viral meningitis poses a significant clinical challenge due to its rapid onset and potential progression to life-threatening encephalitis. Early detection of treatable viral pathogens such as Herpes simplex virus (HSV), Cytomegalovirus (CMV), and Varicella-zoster virus (VZV) is essential for initiating appropriate therapies. However, multiplex PCRs for the rapid and simultaneous detection of these pathogens are scarce due to the complex PCR design and the elaborate validation process using cerebrospinal fluid samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!