It remains a challenge to understand the unconventional mechanisms that cause high-T(C) superconductivity in cuprate superconductors, high-T(C) multiferroicity in CuO, or low-dimensional magnetism in the spin-Peierls transition compounds such as CuGeO(3). A common feature of all these copper oxide compounds (containing Cu(2+) ions) is the presence of large magnetic superexchange interactions J. It is a general strategy to apply chemical and/or physical pressure in order to tune these exotic properties. Here we show theoretically, for the first time, the impact of physical pressure on J on CuO, for which we predict a strong enhancement of the low-dimensionality of the magnetic interactions and the spin-frustration at high-pressures. Such modifications are expected to strongly influence the multiferroic properties of CuO. We finally demonstrate that PBE0 hybrid DFT calculations provide reliable J values for a wide range of copper(II) oxides compounds, i.e. CuGeO(3), BaCu(2)Si(2)O(7), BaCu(2)Ge(2)O(7), and La(2)CuO(4).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3477650 | PMC |
http://dx.doi.org/10.1038/srep00759 | DOI Listing |
ACS Appl Mater Interfaces
December 2024
Bioengineering Division, Hacettepe University, Ankara 06800, Turkey.
Uniform, mesoporous copper(II) oxide nanospindles (CuO NSs) were synthesized via a method based on templated hydrothermal oxidation of copper in the presence of monodisperse poly(glycerol dimethacrylate--methacrylic acid) nanoparticles (poly(GDMA--MAA) NPs). Subsequent decoration of CuO NSs with a CaO nanoshell (CuO@CaO NSs) yielded a nanozyme capable of Cu(I)/Cu(II) redox cycling. Activation of the Cu(I)/Cu(II) cycle by exogenously generated HO from the CaO nanoshell significantly enhanced glutathione (GSH) depletion.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China.
In this study, waste polystyrene was modified and upgraded to prepare formylated polystyrene, and the modified polystyrene acetyl hydrazone (LT-HPA) was synthesized by condensation with polymethyl-propionyl-hydrazine. It is proven that the modification of the adsorption material is successful by various characterization methods. In the subsequent pollutant removal study, pH, mass, concentration, contact time, and salt ion interference were investigated.
View Article and Find Full Text PDFMolecules
December 2024
Department of Analytical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland.
This paper presents a comparative study on the temperature resistance of solid-contact ion-selective electrodes, depending on the type of solid-contact material. Five types of potassium electrodes, with a valinomycin-based model membrane, were developed using different types of mediation layers, namely a conductive polymer (poly(3-octylthiophene-2,5-diyl) and a perinone polymer), multi-walled carbon nanotubes, copper(II) oxide nanoparticles, and a nanocomposite consisting of multi-walled carbon nanotubes and copper(II) oxide. We examined how the measurement temperature (10 °C, 23 °C, and 36 °C) affects the sensitivity, measurement range, detection limit, selectivity, as well as the stability and reversibility of the electrode potential.
View Article and Find Full Text PDFOrg Lett
December 2024
School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
The synthesis of (iso)quinoline-indole hybrids by reacting (iso)quinoline -oxides with -alkynylanilines in the presence of a combination of copper(II) catalyst and a bidentate 2,2'-bipyridine ligand is described. The utility of this method was demonstrated through site-selective functionalization of the synthesized products. A plausible reaction pathway for site-selective amination followed by annulative indole formation was elucidated by a series of mechanistic investigations.
View Article and Find Full Text PDFChemistry
December 2024
Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal.
Self-assembly synthesis of mixed-ligand (silsesquioxane/acetate) complex allows to isolate record high nuclear copper(II) Cu-cage (1). In the presence of two additional sodium ions, a unique molecular architecture, with triple combination of ligands (cyclic and acyclic silsesquioxanes as well as acetates), has been formed. The structure was established by single-crystal X-ray diffraction based on the use of synchrotron radiation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!