The phytohormone auxin contributes to virtually every aspect of the plant development. The spatiotemporal distribution of auxin depends on a complex interplay between auxin metabolism and intercellular auxin transport. Intracellular auxin compartmentalization provides another link between auxin transport processes and auxin metabolism. The PIN-LIKES (PILS) putative auxin carriers localize to the endoplasmic reticulum (ER) and contribute to cellular auxin homeostasis. PILS proteins regulate intracellular auxin accumulation, the rate of auxin conjugation and, subsequently, affect nuclear auxin signaling. Here, we investigate sequence diversification of the PILS family in Arabidopsis thaliana and provide insights into the evolution of these novel putative auxin carriers in plants. Our data suggest that PILS proteins are conserved throughout the plant lineage and expanded during higher plant evolution. PILS proteins diversified early during plant evolution into three clades. Besides the ancient Clade I encompassing non-land plant species, PILS proteins evolved into two clades. The diversification of Clade II and Clade III occurred already at the level of non-vascular plant evolution and, hence, both clades contain vascular and non-vascular plant species. Nevertheless, Clade III contains fewer non- and increased numbers of vascular plants, indicating higher importance of Clade III for vascular plant evolution. Notably, PILS proteins are distinct and appear evolutionarily older than the prominent PIN-FORMED auxin carriers. Moreover, we revealed particular PILS sequence divergence in Arabidopsis and assume that these alterations could contribute to distinct gene regulations and protein functions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3470039 | PMC |
http://dx.doi.org/10.3389/fpls.2012.00227 | DOI Listing |
Plant Sci
December 2024
Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China; Hainan Institute, Zhejiang University, Sanya 572025, PR China. Electronic address:
Auxin plays a pivotal role in plant growth regulation. The PIN-FORMED (PIN) proteins facilitate long-distance polar auxin transport, whereas the recently identified PIN-LIKES (PILS) proteins regulate intracellular auxin homeostasis. However, the auxin transport mechanisms in horticultural crops remain largely unexplored.
View Article and Find Full Text PDFCommun Med (Lond)
December 2024
Institute of Biological Information Processing (Structural Biochemistry: IBI-7), Forschungszentrum Jülich, 52428, Jülich, Germany.
Background: Quantification of Amyloid beta (Aβ) oligomers in plasma enables early diagnosis of Alzheimer's Disease (AD) and improves our understanding of underlying pathologies. However, quantification necessitates an extremely sensitive and selective technology because of very low Aβ oligomer concentrations and possible interference from matrix components.
Methods: In this report, we developed and validated a surface-based fluorescence distribution analysis (sFIDA) assay for quantification of Aβ oligomers in plasma.
Alzheimers Res Ther
October 2024
Institute of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52428, Jülich, Germany.
Background: Misfolding and aggregation of amyloid β (Aβ), along with neurofibrillary tangles consisting of aggregated Tau species, are pathological hallmarks of Alzheimer's disease (AD) onset and progression. In this study, we hypothesized the clearance of Aβ aggregates from the brain and body into the gut.
Methods: To investigate this, we used surface-based fluorescence intensity distribution analysis (sFIDA) to determine the Aβ aggregate concentrations in feces from 26 AD patients and 31 healthy controls (HC).
Clin Exp Immunol
November 2024
Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK.
Cellular phenotype and function are altered in different microenvironments. For targeted therapies it is important to understand site-specific cellular adaptations. Juvenile idiopathic arthritis (JIA) is characterized by autoimmune joint inflammation, with frequent inadequate treatment responses.
View Article and Find Full Text PDFJ Cell Sci
February 2024
Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!