Recent studies have shown that there is a direct link between the orientation of the nerve fibers in white matter (WM) and the contrast observed in magnitude and phase images acquired using gradient echo MRI. Understanding the origin of this link is of great interest because it could offer access to a new diagnostic tool for investigating tissue microstructure. Since it has been suggested that myelin is the dominant source of this contrast, creating an accurate model for characterizing the effect of the myelin sheath on the evolution of the NMR signal is an essential step toward fully understanding WM contrast. In this study, we show by comparison of the results of simulations and experiments carried out on human subjects at 7T, that the magnitude and phase of signals acquired from WM in vivo can be accurately characterized by (i) modeling the myelin sheath as a hollow cylinder composed of material having an anisotropic magnetic susceptibility that is described by a tensor with a radially oriented principal axis, and (ii) adopting a two-pool model in which the water in the sheath has a reduced T(2) relaxation time and spin density relative to its surroundings, and also undergoes exchange. The accuracy and intrinsic simplicity of the hollow cylinder model provides a versatile framework for future exploitation of the effect of WM microstructure on gradient echo contrast in clinical MRI.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3494918 | PMC |
http://dx.doi.org/10.1073/pnas.1211075109 | DOI Listing |
J Magn Reson Imaging
January 2025
Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada.
Background: MRI offers quantification of proton density fat fraction (PDFF) and tissue characteristics with T1 mapping. The influence of age, sex, and the potential confounding effects of fat on T1 values in skeletal muscle in healthy adults are insufficiently known.
Purpose: To determine the accuracy and repeatability of a saturation-recovery chemical-shift encoded multiparametric approach (SR-CSE) for quantification of T1 and muscle fat content, and establish normative values (age, sex) from a healthy cohort.
Tomography
January 2025
NextGen Precision Health, Department of Radiology, University of Missouri Columbia, 1030 Hitt Street, Columbia, MO 65201, USA.
: The increased SNR available at 7T combined with fast readout trajectories enables accelerated spectroscopic imaging acquisitions for clinical applications. In this report, we evaluate the performance of a Hadamard slice encoding strategy with a 2D rosette trajectory for multi-slice fast spectroscopic imaging at 7T. : Moderate-TE (~40 ms) spin echo and J-refocused polarization transfer sequences were acquired with simultaneous Hadamard multi-slice excitations and rosette in-plane encoding.
View Article and Find Full Text PDFInvest Radiol
January 2025
From the Departments of Radiology (J.F.H., S.Y.C., J.-P.G., J.S., P.N., S.B.R., T.M.G.), Biomedical Engineering (S.B.R., T.M.G.), Medical Physics (S.Y.C., S.B.R., T.M.G.), Medicine (S.B.R.), and Emergency Medicine (S.B.R.), University of Wisconsin-Madison, WI; and Department of Diagnostic and Interventional Radiology (J.F.H., J.-P.G.), University Hospital Würzburg, Würzburg, Germany.
Rationale And Objectives: Pulmonary magnetic resonance angiography (MRA) is an imaging method with proven utility for the exclusion of pulmonary embolism and avoids the need for ionizing radiation and iodinated contrast agents. High-relaxivity gadolinium-based contrast agents (GBCAs), such as gadopiclenol, can be used to reduce the required gadolinium dose for pulmonary MRA. The aim of this study was to compare the contrast enhancement performance of gadopiclenol with an established gadobenate dimeglumine-enhanced pulmonary MRA protocol.
View Article and Find Full Text PDFActa Radiol
January 2025
Department of Radiology, Changi General Hospital, Singapore, Republic of Singapore.
Background: Computed tomography (CT) is the gold standard imaging modality for the assessment of 3D bony morphology but incurs the cost of ionizing radiation exposure. High-resolution 3D magnetic resonance imaging (MRI) with CT-like bone contrast (CLBC) may provide an alternative to CT in allowing complete evaluation of both bony and soft tissue structures with a single MRI examination.
Purpose: To review the technical aspects of an optimized stack-of-stars 3D gradient recalled echo pulse sequence method (3D-Bone) in generating 3D MR images with CLBC, and to present a pictorial review of the utility of 3D-Bone in the clinical assessment of common musculoskeletal conditions.
Acad Radiol
January 2025
Department of Radiology, Kantonsspital Baden, affiliated Hospital for Research and Teaching of the Faculty of Medicine of the University of Zurich, Im Ergel 1, 5404 Baden, Switzerland (D.H., A.M., R.R., J.H., R.A.K.-H.).
Rationale And Objectives: The aim of this study was to compare the image quality of a deep learning (DL)-accelerated volumetric interpolated breath-hold examination (VIBE) sequence with a standard (ST) VIBE sequence in assessing the uterus.
Materials And Methods: Between April and December 2023, a total of 61 female patients (aged 41 ± 14 years) who were referred for an magnetic resonance imaging (MRI) of the pelvis were included in this prospective study, after providing informed consent. All examinations were performed with a 1.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!