The present study reports on a new strategy for selective, radiation therapy-amplified drug delivery using an antiangiogenic 33-a.a., tumor vasculature-targeting ligand, anginex, to improve the therapeutic ratio for strategies developed against solid tumors. Our findings indicate that galectin-1 is (a) one of the major receptors for anginex (b) overexpressed by tumor neovasculature and (c) further specifically upregulated in endothelial cells in response to radiation exposure as low as 0.5 Gy. An investigation of [18]-F-labeled anginex biodistribution in SCK tumors indicates that anginex is an effective targeting molecule for image and radiation-guided therapy of solid tumors. An anginex-conjugated liposome capable of being loaded with drug was shown to selectively target endothelial cells post-radiation. The presence of endothelial cells in a three-dimensional co-culture system with tumor cells developed to study tumor/endothelial cell interactions in vitro led to higher levels of galectin-1 and showed a further increase in expression upon radiation exposure when compared to tumor cell spheroids alone. Similar increase in galectin-1 was observed in tumor tissue originating from the tumor-endothelial cell spheroids in vivo and radiation exposure further induced galectin-1 in these tumors. The overall results suggest feasibility of using a clinical or subclinical radiation dose to increase expression of the galectin-1 receptor on the tumor microvasculature to promote delivery of therapeutics via the anginex peptide. This approach may reduce systemic toxicity, overcome drug resistance, and improve the therapeutic efficacy of conventional chemo/radiation strategies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3586987 | PMC |
http://dx.doi.org/10.1007/s00109-012-0965-1 | DOI Listing |
Tissue Eng Regen Med
January 2025
College of Materials Science and Engineering, Hunan University, Changsha, 410072, People's Republic of China.
Background: Tissue engineering holds promise for vascular repair and regeneration by mimicking the extracellular matrix of blood vessels. However, achieving a functional and thick vascular wall with aligned fiber architecture by electrospinning remains a significant challenge.
Methods: A novel electrospinning setup was developed that utilizes an auxiliary electrode and a spring.
Zhongguo Dang Dai Er Ke Za Zhi
January 2025
Department of Pediatrics, Third People's Hospital of Longgang District of Shenzhen, Shenzhen, Guangdong 518020, China.
Objectives: To explore the role of berberine (BBR) in ameliorating coronary endothelial cell injury in Kawasaki disease (KD) by regulating the complement and coagulation cascade.
Methods: Human coronary artery endothelial cells (HCAEC) were divided into a healthy control group, a KD group, and a BBR treatment group (=3 for each group). The healthy control group and KD group were supplemented with 15% serum from healthy children and KD patients, respectively, while the BBR treatment group received 15% serum from KD patients followed by the addition of 20 mmol/L BBR.
J Transl Med
January 2025
Department of Anesthesiology, Daping Hospital, Army Medical University, No.10, Changjiang Road, Yuzhong District, Chongqing, 400042, China.
Background: Sepsis is a systemic inflammatory syndrome that can cause coagulation abnormalities, leading to damage in multiple organs. Vascular endothelial cells (VECs) are crucial in the development of sepsis-induced coagulopathy (SIC). The role of Parthenolide (PTL) in regulating SIC by protecting VECs remains unclear.
View Article and Find Full Text PDFChem Biol Interact
January 2025
Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria. Electronic address:
A series of eight gold(I) N-heterocyclic carbene (NHC) complexes [Au(IMes)(HLn)] based on 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene (IMes) and 7-azaindole derivatives (HLn), where n = 1-8 for HL1 = 5-flouro-7-azaindole, HL2 = 5-bromo-7-azaindole, HL3 = 3-chloro-7-azaindole, HL4 = 3-iodo-7-azaindole, HL5 = 5-bromo-3-chloro-7-azaindole, HL6 = 5-bromo-3-iodo-7-azaindole, HL7 = 4-chloro-2-methyl-7-azaindole and HL8 = 7-azaindole, was prepared, characterised and studied for their in vitro anti-cancer and anti-inflammatory effects. The complexes showed significant cytotoxicity on human ovarian cancer cell lines (A2780, IC ≈ 8-19 μM and A2780R, IC ≈ 8-19 μM) and lowered toxicity in normal HaCat and MRC-5 cells. Cellular effects of the selected complexes 1 and 7 were evaluated in A2780 cells using flow cytometry.
View Article and Find Full Text PDFChem Biol Interact
January 2025
Department of Thoracic Surgery, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, PR China; Jiangxi Hospital of China-Japan Friendship Hospital, National Regional Center for Respiratory Medicine, Nanchang 330000, Jiangxi, PR China; Jiangxi Institute of Respiratory Disease, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, Jiangxi, PR China. Electronic address:
Hyperhomocysteinemia (HHcy) is associated with the development and progression of chronic cardiovascular diseases through the deleterious effects of high levels of homocysteine (Hcy) on the cardiovascular system. However, the exact mechanism of action of Hcy on the acute injury of the cardiovascular system following ischemia/reperfusion (I/R) remains unclear. The present study demonstrated that copper mobilization occurs during cardiac I/R, and the interactive toxic effect of Hcy and mobile Cu during cardiac I/R induces necroptosis of cardiac microvascular endothelial cells (CMECs) and thus enhances cardiac dysfunction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!