Neurologic and motor dysfunctions in APP transgenic mice.

Rev Neurosci

Departement de Psychologie, Universite de Rouen, Mont-Saint-Aignan, France.

Published: November 2012

The discovery of gene mutations underlying autosomal dominant Alzheimer's disease has enabled researchers to reproduce several hallmarks of this disorder in transgenic mice, notably the formation of Aβ plaques in brain and cognitive deficits. APP transgenic mutants have also been investigated with respect to survival rates, neurologic functions, and motor coordination, which are all susceptible to alteration in Alzheimer dementia. Several transgenic lines expressing human mutated or wild-type APP had higher mortality rates than non-transgenic controls with or without the presence of Aβ plaques. Mortality rates were also elevated in APP transgenic mice with vascular amyloid accumulation, thereby implicating cerebrovascular factors in the precocious death observed in all APP transgenic models. In addition, myoclonic jumping has been described in APP mutants, together with seizure activity, abnormal limb-flexion and paw-clasping reflexes, and motor coordination deficits. The neurologic signs resemble the myoclonic movements, epileptic seizures, pathological reflexes, and gait problems observed in late-stage Alzheimer's disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3481185PMC
http://dx.doi.org/10.1515/revneuro-2012-0041DOI Listing

Publication Analysis

Top Keywords

app transgenic
16
transgenic mice
12
alzheimer's disease
8
aβ plaques
8
motor coordination
8
mortality rates
8
app
6
transgenic
6
neurologic motor
4
motor dysfunctions
4

Similar Publications

Inhibition of IFITM3 in cerebrovascular endothelium alleviates Alzheimer's-related phenotypes.

Alzheimers Dement

January 2025

Center for Geriatric Medicine, Key Laboratory of Alzheimer's Disease of Zhejiang Province, The First Affiliated Hospital and Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, China.

Introduction: Interferon-induced transmembrane protein 3 (IFITM3) modulates γ-secretase in Alzheimer's Disease (AD). Although IFITM3 knockout reduces amyloid β protein (Aβ) production, its cell-specific effect on AD remains unclear.

Methods: Single nucleus RNA sequencing (snRNA-seq) was used to assess IFITM3 expression.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is marked by impaired cognitive functions, particularly in learning and memory, owing to complex and diverse mechanisms. Methionine restriction (MR) has been found to exert a mitigating effect on brain oxidative stress to improve AD. However, the bidirectional crosstalk between the gut and brain through which MR enhances learning and memory in AD, as well as the effects of fecal microbiota transplantation (FMT) from MR mice on AD mice, remains underexplored.

View Article and Find Full Text PDF

Alzheimer's disease (AD), the most prevalent form of dementia in the elderly, involves critical changes such as reduced aerobic glycolysis in astrocytes and increased neuronal apoptosis, both of which are significant in the disease's pathology. In our study, astrocytes treated with amyloid β1-42 (Aβ) to simulate AD conditions exhibited upregulated expressions of small ubiquitin-like modifier (SUMO)-specific protease 1 (SENP1) and Pumilio RNA Binding Family Member 2 (PUM2), alongside decreased levels of Nuclear factor erythroid 2-related factor 2 (NRF2). SENP1 is notably the most upregulated SUMOylation enzyme in Aβ-exposed astrocytes.

View Article and Find Full Text PDF

Microbiome abnormalities (dysbiosis) significantly contribute to the progression of Alzheimer's disease (AD). However, the therapeutic efficacy of microbiome modulators in protecting against these ailments remains poorly studied. Herein, we tested a cocktail of unique probiotics, including 5 Lactobacillus and 5 Enterococcus strains isolated from infant gut with proven microbiome modulating capabilities.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a progressive degenerative disease that affects a growing number of elderly individuals worldwide. OAB-14, a novel chemical compound developed by our research group, has been approved by the China Food and Drug Administration (FDA) for clinical trials in patients with AD (approval no. YD-OAB-220210).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!