Distinct PKA and Epac compartmentalization in airway function and plasticity.

Pharmacol Ther

Department of Molecular Pharmacology, University Center of Pharmacy, University of Groningen, The Netherlands.

Published: February 2013

AI Article Synopsis

  • Asthma and COPD are obstructive lung diseases that involve airway obstruction, inflammation, and structural changes, with key contributions from various cell types, including mesenchymal and smooth muscle cells.
  • Current treatments aim to manipulate intracellular signaling pathways, particularly involving cyclic AMP (cAMP), to address the dynamic features of these diseases.
  • The review discusses recent insights into how cAMP signaling is compartmentalized in the lungs, its role in disease progression, and the potential for new drug developments targeting these pathways.

Article Abstract

Asthma and chronic obstructive pulmonary disease (COPD) are obstructive lung diseases characterized by airway obstruction, airway inflammation and airway remodelling. Next to inflammatory cells and airway epithelial cells, airway mesenchymal cells, including airway smooth muscle cells and (myo)fibroblasts, substantially contribute to disease features by the release of inflammatory mediators, smooth muscle contraction, extracellular matrix deposition and structural changes in the airways. Current pharmacological treatment of both diseases intends to target the dynamic features of the endogenous intracellular suppressor cyclic AMP (cAMP). This review will summarize our current knowledge on cAMP and will emphasize on key discoveries and paradigm shifts reflecting the complex spatio-temporal nature of compartmentalized cAMP signalling networks in health and disease. As airway fibroblasts and airway smooth muscle cells are recognized as central players in the development and progression of asthma and COPD, we will focus on the role of cAMP signalling in their function in relation to airway function and plasticity. We will recapture on the recent identification of cAMP-sensing multi-protein complexes maintained by cAMP effectors, including A-kinase anchoring proteins (AKAPs), proteins kinase A (PKA), exchange protein directly activated by cAMP (Epac), cAMP-elevating seven-transmembrane (7TM) receptors and phosphodiesterases (PDEs) and we will report on findings indicating that the pertubation of compartmentalized cAMP signalling correlates with the pathopysiology of obstructive lung diseases. Future challenges include studies on cAMP dynamics and compartmentalization in the lung and the development of novel drugs targeting these systems for therapeutic interventions in chronic obstructive inflammatory diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pharmthera.2012.10.006DOI Listing

Publication Analysis

Top Keywords

smooth muscle
12
camp signalling
12
airway
10
airway function
8
function plasticity
8
chronic obstructive
8
obstructive lung
8
lung diseases
8
cells airway
8
airway smooth
8

Similar Publications

Atypical polypoid adenomyoma (APA) is a benign uterine lesion with a premalignant potential and occurs in women of reproductive age. The histological pattern is characterized by irregular epithelial proliferation and muscular stroma. Based on a case report, we performed a systematic review of the literature to assess the main immunohistochemical and molecular markers that contribute to its differential diagnosis against endometrial adenocarcinoma (EC).

View Article and Find Full Text PDF

SIRT1 Activation Suppresses Corneal Endothelial-Mesenchymal Transition via the TGF-β/Smad2/3 Pathway.

Curr Issues Mol Biol

December 2024

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.

Endothelial-mesenchymal transition (EnMT) is the transversion of endothelial cells to mesenchymal cells under certain physiological or pathological conditions. When EnMT occurs in the corneal endothelium, corneal endothelial cells (CECs) lose their normal function and thus cannot maintain corneal clarity. Studies have shown that the mechanism of EnMT in CECs involves the transforming growth factor-β (TGF-β) signaling pathway, and one of the important inhibitors of the TGF-β/Smad2/3 pathway is sirtuin-1 (SIRT1).

View Article and Find Full Text PDF

Fibromuscular dysplasia (FMD) is an arterial disease characterized by fibrous arterial wall thickening and irregular proliferation and degeneration of smooth muscle cells in muscular arteries. Abdominal aortic aneurysms (AAA) are rare, with only a few reported cases. A characteristic feature of AAA is an aneurysm protruding forward near the terminal aorta with stenosis.

View Article and Find Full Text PDF

Epstein-Barr virus (EBV) is one of the most common causes of infection from the herpes virus family which also possesses oncogenic potential. EBV-associated smooth muscle tumors (EBV-SMT) are often found in the CNS but here we present the case of a 50-year-old woman with EBV-SMT in the liver. This patient had a kidney transplant in 2009 and had been undergoing immunosuppressive therapy to support her transplant.

View Article and Find Full Text PDF

Diabetes mellitus type 2 (DMT2) promotes Achilles tendon (AS) degeneration and exercise could modulate features of DMT2. Hence, this study investigated whether tenocytes of non DMT2 and DMT2 rats respond differently to normo- (NG) and hyperglycemic (HG) conditions in the presence of tumor necrosis factor (TNF)α or cyclic stretch. AS tenocytes, isolated from DMT2 (fa/fa) or non DMT2 (lean, fa/+) adult Zucker Diabetic Fatty (ZDF) rats, were treated with 10 ng/mL TNFα either under NG or HG conditions (1 g/L vs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!