We studied the dechlorination of hexachlorobenzene (HCB) in wetland mesocosm (MC) trials filled with sediment (well mineralized homogenized peat mixed with mud) from a wastewater treatment wetland located in a floodplain: three MCs were planted with common reed (Phragmites australis) and another three with broad-leaved cattail (Typha latifolia). According to the rootzone development we distinguished between the upper (0-10 cm from the soil surface) and lower layers (20-30 cm). Over 36 days, the initial measured concentration of HCB was reduced to 61%, 51%, 42% and 40% in the lower layer without roots of Phragmites, in the lower layer with roots of Typha, in the upper layer with roots of Typha, and in the upper layer with roots of Phragmites respectively. The 90% degradation time (DT(90)) of the initial measured HCB can be calculated as 192, 121, 110 and 92 days (d) respectively. PeCB, 1, 2, 3, 4-, 1, 2, 3, 5- and 1, 2, 4, 5-TeCB, and 1, 2, 3-, 1, 2, 4- and 1, 3, 5-TCB were the main dechlorination products detected in MC sediment samples. The dechlorination rates of HCB were higher in sediment layers with well-developed root zones. According to the DT(50) of 28-58 days and DT(90) of 92-192 days, HCB can be considered to be a less persistent organic pollutant in constructed wetlands.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2012.09.030 | DOI Listing |
Nanotechnology
January 2025
Centre for Analysis and Synthesis, NanoLund, Lund University, Box 124, Lund, 221 00, SWEDEN.
Developing a reliable procedure for the growth of III-V nanowires (NW) on silicon (Si) substrates remains a significant challenge, as current methods rely on trial-and-error approaches with varying interpretations of critical process steps such as sample preparation, Au-Si alloy formation in the growth reactor, and nanowire alignment. Addressing these challenges is essential for enabling high-performance electronic and optoelectronic devices that combine the superior properties of III-V NW semiconductors with the well-established Si-based technology. Combining conventional scalable growth methods, such as Metalorganic Chemical Vapor Deposition (MOCVD) with in situ characterization using Environmental Transmission Electron Microscopy (ETEM-MOCVD) enables a deeper understanding of the growth dynamics, if that knowledge is transferable to the scalable processes.
View Article and Find Full Text PDFJ Imaging Inform Med
January 2025
Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Sivas Cumhuriyet University, Sivas, Turkey.
This study aimed to develop a custom artificial intelligence (AI) model for detecting lamina dura (LD) loss around the roots of anterior and posterior teeth on intraoral periapical radiographs. A total of 701 periapical radiographs of the anterior and posterior regions retrieved from the Dentomaxillofacial Radiology archives were reviewed. Images were cropped to include only the teeth exhibiting LD loss and those without LD loss, which were labeled as "1" and "0," respectively.
View Article and Find Full Text PDFDentomaxillofac Radiol
January 2025
Department of Oral and Maxillofacial Radiology, School of Dentistry, Pusan National University, Yangsan, 50612, Korea.
Objectives: This study aimed to develop an automated method for generating clearer, well-aligned panoramic views by creating an optimized three-dimensional (3D) reconstruction zone centered on the teeth. The approach focused on achieving high contrast and clarity in key dental features, including tooth roots, morphology, and periapical lesions, by applying a 3D U-Net deep learning model to generate an arch surface and align the panoramic view.
Methods: This retrospective study analyzed anonymized cone-beam CT (CBCT) scans from 312 patients (mean age 40 years; range 10-78; 41.
Photodiagnosis Photodyn Ther
January 2025
Department of Prosthetic Dental Sciences, College of Dentistry. King Saud University. Riyadh, Saudi Arabia PO Box-60169. Electronic address:
Aim: To investigate the effectiveness of unconventional post space disinfection techniques, specifically Er:YAG laser, Temoporfin, and Carbon Nanoparticles (CNPs), in improving Martens hardness (MH), eliminating the smear layer (SL), and enhancing the push-out bond strength (PBS) of glass fiber posts in canal dentin.
Methods: An in vitro study was conducted utilizing 80 single-rooted extracted human teeth, which were decoronated and subjected to standardized root canal preparation. The teeth were equally distributed into four experimental groups: Group 1 (NaOCl + EDTA), Group 2 (Er: YAG laser + EDTA), Group 3 (Temoporfin + EDTA), and Group 4 (CNPs + EDTA).
Plant Biol (Stuttg)
January 2025
School of Life Sciences, Land Surface-Atmosphere Interactions, Technical University of Munich, Freising, Germany.
Hydraulic redistribution is considered a crucial dryland mechanism that may be important in temperate environments facing increased soil drying-wetting cycles. We investigated redistribution of soil water from deeper, moist to surface, dry soils in a mature mixed European beech forest and whether redistributed water was used by neighbouring native seedlings. In two experiments, we tracked hydraulic redistribution via (1) H labeling and (2) O natural abundance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!