Objective: To describe the dietary composition of the New Nordic Diet (NND) and to compare it with the Nordic Nutrition Recommendations (NNR)/Danish Food-based Dietary Guidelines (DFDG) and with the average Danish diet.
Design: Dietary components with clear health-promoting properties included in the DFDG were included in the NND in amounts at least equivalent to those prescribed by the DFDG. The quantities of the other dietary components in the NND were based on scientific arguments for their potential health-promoting properties together with considerations of acceptability, toxicological concerns, availability and the environment. Calculations were conducted for quantifying the dietary and nutrient composition of the NND.
Setting: Denmark.
Subjects: None.
Results: The NND is characterized by a high content of fruits and vegetables (especially berries, cabbages, root vegetables and legumes), fresh herbs, potatoes, plants and mushrooms from the wild countryside, whole grains, nuts, fish and shellfish, seaweed, free-range livestock (including pigs and poultry) and game. Overall, the average daily intakes of macro- and micronutrients in the NND meet the NNR with small adjustments based on evidence of their health-promoting properties.
Conclusions: The NND is a prototype regional diet that takes palatability, health, food culture and the environment into consideration. Regionally appropriate healthy diets could be created on similar principles anywhere in the world.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10271429 | PMC |
http://dx.doi.org/10.1017/S1368980012004521 | DOI Listing |
Background: Chronic kidney disease (CKD) is a highly prevalent condition with complications such as constipation, inflammation, and dietary restrictions. Gut microbiota is an ecosystem of trillions of bacteria and other microorganisms such as viruses, fungi, and other eukaryotes. This review aimed to analyze the correlation between CKD and the microbiota.
View Article and Find Full Text PDFWorld J Orthop
December 2024
Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, São Paulo, Brazil.
The gut microbiome, a complex ecosystem of microorganisms in the digestive tract, has emerged as a critical factor in human health, influencing metabolic, immune, and neurological functions. This review explores the connection between the gut microbiome and orthopedic health, examining how gut microbes impact bone density, joint integrity, and skeletal health. It highlights mechanisms linking gut dysbiosis to inflammation in conditions such as rheumatoid arthritis and osteoarthritis, suggesting microbiome modulation as a potential therapeutic strategy.
View Article and Find Full Text PDFFront Vet Sci
December 2024
College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China.
During the late laying period, the intestinal barrier of laying hens is susceptible to damage, resulting in enteric infections and even systemic inflammatory responses, posing a major challenge for the poultry industry. Therefore, it is crucial to investigate methods for addressing intestinal inflammation in late laying hens. In order to maximize the production potential of egg laying chickens, farmers usually use various feed additives to prevent damage to the intestinal barrier.
View Article and Find Full Text PDFFront Vet Sci
December 2024
College of Animal Science and Technology, Ningxia University, Yinchuan, China.
Introduction: Postpartum dairy cows are susceptible to negative energy balance caused by decreased feed intake and the initiation of lactation. Sijunzi San, a famous Chinese traditional herbal formulation, can promote gastrointestinal digestion and absorption and improve disorders of intestinal microbiota. Therefore, we hypothesized that Sijunzi San might alleviate negative energy balance in postpartum dairy cows by modulating the structure of the rumen microbiota and enhancing its fermentation capacity.
View Article and Find Full Text PDFFront Vet Sci
December 2024
Institute of Dairy and Animal Sciences, University of Agriculture, Faisalabad, Pakistan.
Introduction: High-producing dairy cows often face calving stress and reduced feed intake during the transition period, leading to body fat mobilization to meet production demands. Supplementing rations with energy-dense sources like rumen-protected glucose (RPG) may enhance production performance in early lactation.
Methods: This study evaluated the effects of RPG supplementation on feed intake, body condition score (BCS), production performance, and blood metabolites in 32 early-lactation Holstein Friesian cows (6 ± 1 DIM; milk yield: 30 ± 5 kg/day; body weight: 550 ± 50 kg; BCS: 3.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!