The development of the last day embryo to the first instar larva is an essential process in the honeybee life cycle. However, the molecular mechanism of this life transition is still unknown. The proteome and phosphoproteome of last day embryos (72 h) and first instar larvae (24h, post hatching) were analyzed using 2-DE, multiplex fluorescent staining, mass spectrometry, bioinformatics, and qRT-PCR. Sixty-five proteins and 34 phosphoproteins changed their expression across the shift of embryos to larvae. The embryo stronger expression of proteins related to energy metabolism, development and amino acid metabolism suggests its high metabolic energy demand during active embryogenesis. While, the newly hatched larvae escalated the expression of proteins related to cytoskeleton, biosynthesis, protein folding, fatty acid and oxidative metabolism, particularly the higher phosphorylation of cytoskeleton and biosynthesis indicates their roles to ensure the fast growing larvae. These differences in protein expression level illustrate that specific protein functions are restricted to particular developmental stage. Our data suggest the essential changes of proteome and phosphoproteome to trigger the transition of embryo to larvae. This unravels the molecular event behind the first life cycle transition of honeybees and is potentially helpful for future reverse genetic studies in this model insect.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jprot.2012.10.012DOI Listing

Publication Analysis

Top Keywords

proteome phosphoproteome
12
changes proteome
8
phosphoproteome trigger
8
life cycle
8
expression proteins
8
cytoskeleton biosynthesis
8
larvae
5
trigger embryo-larva
4
transition
4
embryo-larva transition
4

Similar Publications

Peanut ( L.) is one of the most important crops for oil and protein production. The unique characteristic of peanut is geocarpy, which means that it blooms aerially and the peanut gynophores (pegs) penetrate into the soil, driving the fruit underground.

View Article and Find Full Text PDF

Functional genomics pipeline identifies CRL4 inhibition for the treatment of ovarian cancer.

Clin Transl Med

February 2025

Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA.

Background: The goal of precision oncology is to find effective therapeutics for every patient. Through the inclusion of emerging therapeutics in a high-throughput drug screening platform, our functional genomics pipeline inverts the common paradigm to identify patient populations that are likely to benefit from novel therapeutic strategies.

Approach: Utilizing drug screening data across a panel of 46 cancer cell lines from 11 tumor lineages, we identified an ovarian cancer-specific sensitivity to the first-in-class CRL4 inhibitors KH-4-43 and 33-11.

View Article and Find Full Text PDF

Introduction: Recent work identified members of the evolutionarily conserved coronin protein family as key regulators of cell population size. This work originated ~25 years ago through the identification, by two-dimensional gel electrophoresis, of coronin 1 as a host protein involved in the virulence of . We here describe the journey from a spot on a 2D gel to the recent realization that coronin proteins represent key controllers of eukaryotic cell population sizes, using ever more sophisticated proteomic techniques.

View Article and Find Full Text PDF

Glioblastoma (GBM) is a devastating malignant brain tumor with a poor prognosis. GBM is associated with radioresistance. Post-translational modifications (PTMs) such as protein phosphorylation can play an important role in the cellular response to radiation.

View Article and Find Full Text PDF

We introduce here a novel approach, termed time-segmented acquisition (Seg), to enhance the identification of peptides and proteins in trapped ion mobility spectrometry (TIMS)-time-of-flight (TOF) mass spectrometry. Our method exploits the positive correlation between ion mobility values and reversed-phase liquid chromatography (LC) retention time to improve ion separation and resolution. By dividing the LC retention time into multiple segments and applying a segment-specific narrower ion mobility range within the TIMS tunnel, we achieved better separation and higher resolution of ion mobility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!