Possible magnetic-polaron-switched positive and negative magnetoresistance in the GdSi single crystals.

Sci Rep

Jülich Centre for Neutron Science JCNS, Forschungszentrum Jülich GmbH, Outstation at Institut Laue-Langevin, Boîte Postale 156, F-38042 Grenoble Cedex 9, France.

Published: March 2013

Magnetoresistance (MR) has attracted tremendous attention for possible technological applications. Understanding the role of magnetism in manipulating MR may in turn steer the searching for new applicable MR materials. Here we show that antiferromagnetic (AFM) GdSi metal displays an anisotropic positive MR value (PMRV), up to ~415%, accompanied by a large negative thermal volume expansion (NTVE). Around T(N) the PMRV translates to negative, down to ~-10.5%. Their theory-breaking magnetic-field dependencies [PMRV: dominantly linear; negative MR value (NMRV): quadratic] and the unusual NTVE indicate that PMRV is induced by the formation of magnetic polarons in 5d bands, whereas NMRV is possibly due to abated electron-spin scattering resulting from magnetic-field-aligned local 4f spins. Our results may open up a new avenue of searching for giant MR materials by suppressing the AFM transition temperature, opposite the case in manganites, and provide a promising approach to novel magnetic and electric devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3475993PMC
http://dx.doi.org/10.1038/srep00750DOI Listing

Publication Analysis

Top Keywords

magnetic-polaron-switched positive
4
negative
4
positive negative
4
negative magnetoresistance
4
magnetoresistance gdsi
4
gdsi single
4
single crystals
4
crystals magnetoresistance
4
magnetoresistance attracted
4
attracted tremendous
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!