Because of the possibility of transmitting communicable diseases, in particular the HIV virus, it has been recommended that all diagnostic contact lenses, including rigid lenses, be disinfected after each use. Hydrogen peroxide is a recommended disinfection agent, but its effect on rigid lens polymers is relatively unknown. We soaked 50 lenses of 5 different polymers in 3% hydrogen peroxide for 10 min and measured the base curves to determine if any changes occurred. Our results showed no statistically significant change in base curve for the lenses measured, but 22% of the lenses did exhibit a small amount of warpage (mean 0.0382 mm) of the base curve. We were not able to determine what caused these lenses, and not all the lenses, to warp. Under the conditions of this study, hydrogen peroxide does not appear to cause clinically significant parameter changes, but lenses should be checked for warpage before use.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/00006324-199001000-00005 | DOI Listing |
Background: The photothermal sensitivity of tobacco refers to how tobacco plants respond to variations in the photothermal conditions of their growth environment. The degree of this sensitivity is crucial for determining the optimal planting regions for specific varieties, as well as for improving the quality and yield of tobacco leaves. However, the precise mechanisms underlying the development of photothermal sensitivity in tobacco remain unclear.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physics, Faculty of Basic Sciences, Shahed University, Tehran, Iran.
The effects of low-intensity ultrasound on plants such as piezoelectric and ultrasonic water baths, on plants have been extensively studied. However, the specific effect of airborne ultrasound on plant cells has yet to be reported. The present study was conducted to elucidate the physiological responses of plant cells to airborne US.
View Article and Find Full Text PDFNat Commun
January 2025
Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontier of Science Center for Cell Response, Nankai University, Tianjin, 300071, China.
Nanozymes play a pivotal role in mitigating excessive oxidative stress, however, determining their specific enzyme-mimicking activities for intracellular free radical scavenging is challenging due to endo-lysosomal entrapment. In this study, we employ a genetic engineering strategy to generate ionizable ferritin nanocages (iFTn), enabling their escape from endo-lysosomes and entry into the cytoplasm. Specifically, ionizable repeated Histidine-Histidine-Glutamic acid (9HE) sequences are genetically incorporated into the outer surface of human heavy chain FTn, followed by the assembly of various chain-like nanostructures via a two-armed polyethylene glycol (PEG).
View Article and Find Full Text PDFJ Adv Res
January 2025
the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China. Electronic address:
Introduction: Spinal cord injury (SCI) is a severe central nervous system disorder with limited treatment options. While autophagy plays a protective role in neural repair, its regulatory mechanisms in SCI remain unclear. Actin-like protein 6A (Actl6a) influences cell fate and neural development, yet its specific role in SCI repair is not well understood.
View Article and Find Full Text PDFBioresour Technol
January 2025
Department of Food Science and Engineering, School of Chemical Engineering, Xiangtan University, Xiangtan 411105 China. Electronic address:
Microalgal exopolysaccharides (EPS) possess significant functional benefits across various industrial sectors, but their commercial feasibility is constrained by inefficient synthesis and poorly understood synthesis mechanisms. This study found that 1.25 mmol/L sodium bisulfite promoted EPS accumulation to 224.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!