Sirtuin catalysis and regulation.

J Biol Chem

Department of Biomolecular Chemistry and the Wisconsin Institute for Discovery, University of Wisconsin, Madison, Wisconsin 53715, USA.

Published: December 2012

Sirtuins are a family of NAD(+)-dependent protein deacetylases/deacylases that dynamically regulate transcription, metabolism, and cellular stress response. Their general positive link with improved health span in mammals, potential regulation of pathways mediated by caloric restriction, and growing links to human disease have spurred interest in therapeutics that target their functions. Here, we review the current understanding of the chemistry of catalysis, biological targets, and endogenous regulation of sirtuin activity. We discuss recent efforts to generate small-molecule regulators of sirtuin activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3522242PMC
http://dx.doi.org/10.1074/jbc.R112.378877DOI Listing

Publication Analysis

Top Keywords

sirtuin activity
8
sirtuin catalysis
4
catalysis regulation
4
regulation sirtuins
4
sirtuins family
4
family nad+-dependent
4
nad+-dependent protein
4
protein deacetylases/deacylases
4
deacetylases/deacylases dynamically
4
dynamically regulate
4

Similar Publications

SIRT1 Activation Suppresses Corneal Endothelial-Mesenchymal Transition via the TGF-β/Smad2/3 Pathway.

Curr Issues Mol Biol

December 2024

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.

Endothelial-mesenchymal transition (EnMT) is the transversion of endothelial cells to mesenchymal cells under certain physiological or pathological conditions. When EnMT occurs in the corneal endothelium, corneal endothelial cells (CECs) lose their normal function and thus cannot maintain corneal clarity. Studies have shown that the mechanism of EnMT in CECs involves the transforming growth factor-β (TGF-β) signaling pathway, and one of the important inhibitors of the TGF-β/Smad2/3 pathway is sirtuin-1 (SIRT1).

View Article and Find Full Text PDF

Background: Multiple myeloma, a malignancy of plasma cells, often involves the disruption of vitamin D metabolism. Vitamin D, acting through its receptor (VDR), affects transcription factors like FOXO and sirtuins, which regulate cellular processes. The impact of physical activity on these markers in multiple myeloma patients is unclear.

View Article and Find Full Text PDF

Background: Chronic obstructive pulmonary disease (COPD) is a prevalent yet manageable respiratory condition. However, treatments presently used normally have side effects and cannot cure COPD, making it urgent to explore effective medications. The ginsenoside Rg3 (Rg3) has been shown to have anti-inflammatory and anti-tumor properties and can improve COPD.

View Article and Find Full Text PDF

Resveratrol (RSV), a natural polyphenol, has been suggested to influence glucose and lipid metabolism. However, the underlying molecular mechanism of its action remains largely unknown due to its multiple biological targets and low bioavailability. In this study, we demonstrate that RSV supplementation ameliorates high-fat-diet (HFD)-induced gut microbiota dysbiosis, enhancing the abundance of anti-obesity bacterial strains such as and .

View Article and Find Full Text PDF

Therapeutic potential of the flavonoid compound Licochalcone D in metabolic dysfunction-associated steatotic liver disease.

Biochem Biophys Res Commun

December 2024

Department of Biological Science, College of Natural Sciences, Chosun University, 309 Pilmun-daero, Dong-gu, 61452, Gwangju, South Korea; The Basic Science Institute of Chosun University, Chosun University, 61452, Gwangju, South Korea; Department of Integrative Biological Science, BK21 FOUR Education Research Group for Age-Associated Disorder Control Technology, Chosun University, 61452, Gwangju, South Korea. Electronic address:

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent chronic liver disease associated with type 2 diabetes, which doubles the risk of developing this condition. Various flavonoid compounds have a positive effect on lipid metabolism, inflammation, and insulin resistance and can contribute to slowing down the progression of MASLD. In the current study, we investigated the biological effects of Licochalcone D (Lico D), a flavonoid, in a metabolic disease model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!