Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The usefulness of mathematical models for the biological regulatory networks relies on the predictive capability of the models in order to suggest interesting hypotheses and suitable biological experiments. All mathematical frameworks dedicated to biological regulatory networks must manage a large number of abstract parameters, which are not directly measurable in the cell. The cornerstone to establish predictive models is the identification of the possible parameter values. Formal frameworks involve qualitative models with discrete values and computer-aided logic reasoning. They can provide the biologists with an automatic identification of the parameters via a formalization of some biological knowledge into temporal logic formulas. For pedagogical reasons, we focus on gene regulatory networks and develop a qualitative model of the detoxification of benzo[a]pyrene in human cells to illustrate the approach.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-62703-059-5_9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!