A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A urinary peptide biomarker set predicts worsening of albuminuria in type 2 diabetes mellitus. | LitMetric

A urinary peptide biomarker set predicts worsening of albuminuria in type 2 diabetes mellitus.

Diabetologia

Department of Clinical Pharmacology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, Groningen, the Netherlands.

Published: February 2013

Aims/hypothesis: Microalbuminuria is considered the first clinical sign of kidney dysfunction and is associated with a poor renal and cardiovascular prognosis in type 2 diabetes. Detection of patients who are prone to develop micro- or macroalbuminuria may represent an effective strategy to start or optimise therapeutic intervention. Here we assessed the value of a urinary proteomic-based risk score (classifier) in predicting the development and progression of microalbuminuria.

Methods: We conducted a prospective case-control study. Cases (n = 44) and controls (n = 44) were selected from the PREVEND (Prevention of Renal and Vascular End-stage Disease) study and from the Steno Diabetes Center (Gentofte, Denmark). Cases were defined by transition from normo- to microalbuminuria or from micro- to macroalbuminuria over a follow-up of 3 years. Controls with no transitions in albuminuria were pair-matched for age, sex and albuminuria status. A model for the progression of albuminuria was built using a proteomic classifier based on 273 urinary peptides.

Results: The proteomic classifier was independently associated with transition to micro- or macroalbuminuria (OR 1.35 [95% CI 1.02, 1.79], p = 0.035). The classifier predicted the development and progression of albuminuria on top of albuminuria and estimated GFR (eGFR, area under the receiver operating characteristic [ROC] curve increase of 0.03, p = 0.002; integrated discrimination index [IDI]: 0.105, p = 0.002). Fragments of collagen and α-2-HS-glycoprotein showed significantly different expression between cases and controls.

Conclusions/interpretation: Although limited by the relatively small sample size, these results suggest that analysis of a urinary biomarker set enables early renal risk assessment in patients with diabetes. Further work is required to confirm the role of urinary proteomics in the prevention of renal failure in diabetes.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00125-012-2755-2DOI Listing

Publication Analysis

Top Keywords

micro- macroalbuminuria
12
biomarker set
8
type diabetes
8
development progression
8
prevention renal
8
progression albuminuria
8
proteomic classifier
8
albuminuria
6
urinary
5
diabetes
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!