Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Aims/hypothesis: Microalbuminuria is considered the first clinical sign of kidney dysfunction and is associated with a poor renal and cardiovascular prognosis in type 2 diabetes. Detection of patients who are prone to develop micro- or macroalbuminuria may represent an effective strategy to start or optimise therapeutic intervention. Here we assessed the value of a urinary proteomic-based risk score (classifier) in predicting the development and progression of microalbuminuria.
Methods: We conducted a prospective case-control study. Cases (n = 44) and controls (n = 44) were selected from the PREVEND (Prevention of Renal and Vascular End-stage Disease) study and from the Steno Diabetes Center (Gentofte, Denmark). Cases were defined by transition from normo- to microalbuminuria or from micro- to macroalbuminuria over a follow-up of 3 years. Controls with no transitions in albuminuria were pair-matched for age, sex and albuminuria status. A model for the progression of albuminuria was built using a proteomic classifier based on 273 urinary peptides.
Results: The proteomic classifier was independently associated with transition to micro- or macroalbuminuria (OR 1.35 [95% CI 1.02, 1.79], p = 0.035). The classifier predicted the development and progression of albuminuria on top of albuminuria and estimated GFR (eGFR, area under the receiver operating characteristic [ROC] curve increase of 0.03, p = 0.002; integrated discrimination index [IDI]: 0.105, p = 0.002). Fragments of collagen and α-2-HS-glycoprotein showed significantly different expression between cases and controls.
Conclusions/interpretation: Although limited by the relatively small sample size, these results suggest that analysis of a urinary biomarker set enables early renal risk assessment in patients with diabetes. Further work is required to confirm the role of urinary proteomics in the prevention of renal failure in diabetes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00125-012-2755-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!