This study proposes a method to facilitate the remote follow up of patients suffering from cardiac pathologies and treated with an implantable device, by synthesizing a 12-lead surface ECG from the intracardiac electrograms (EGM) recorded by the device. Two methods (direct and indirect), based on dynamic time-delay artificial neural networks (TDNNs) are proposed and compared with classical linear approaches. The direct method aims to estimate 12 different transfer functions between the EGM and each surface ECG signal. The indirect method is based on a preliminary orthogonalization phase of the available EGM and ECG signals, and the application of the TDNN between these orthogonalized signals, using only three transfer functions. These methods are evaluated on a dataset issued from 15 patients. Correlation coefficients calculated between the synthesized and the real ECG show that the proposed TDNN methods represent an efficient way to synthesize 12-lead ECG, from two or four EGM and perform better than the linear ones. We also evaluate the results as a function of the EGM configuration. Results are also supported by the comparison of extracted features and a qualitative analysis performed by a cardiologist.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3927462 | PMC |
http://dx.doi.org/10.1109/TBME.2012.2225428 | DOI Listing |
J Cardiovasc Med (Hagerstown)
February 2025
Division of Cardiology, Department of Systems Medicine, Tor Vergata University, Rome.
Atrial cardiomyopathy (AC) has been defined by the European Heart Rhythm Association as "Any complex of structural, architectural, contractile, or electrophysiologic changes in the atria with the potential to produce clinically relevant manifestations".1 The left atrium (LA) plays a key role in maintaining normal cardiac function; in fact atrial dysfunction has emerged as an essential determinant of outcomes in different clinical scenarios, such as valvular diseases, heart failure (HF), coronary artery disease (CAD) and atrial fibrillation (AF). A comprehensive evaluation, both anatomical and functional, is routinely performed in cardiac imaging laboratories.
View Article and Find Full Text PDFCurr Cardiol Rep
January 2025
Heart Division, Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK.
Purpose Of The Review: This review examines the role of vascular access and closure management in cardiac electrophysiology (EP) procedures, emphasising their impact on patient outcomes and safety. It synthesises current evidence and highlights advancements, challenges, and opportunities in this critical area of EP practice.
Recent Findings: Ultrasound-guided vascular access has significantly reduced complications and improved success rates compared to traditional methods.
Circulation
January 2025
City St. George's, University of London, UK (M.C.W., A.C.L., M.M.S.).
Background: Current outcomes from catheter ablation for scar-dependent ventricular tachycardia (VT) are limited by high recurrence rates and long procedure durations. Personalized heart digital twin technology presents a noninvasive method of predicting critical substrate in VT, and its integration into clinical VT ablation offers a promising solution. The accuracy of the predictions of digital twins to detect invasive substrate abnormalities is unknown.
View Article and Find Full Text PDFPulsed Field Ablation (PFA) is a new ablation method being rapidly adopted for treatment of atrial fibrillation, which shows advantages in safety and efficiency over radiofrequency and cryo-ablation. In this study, we used an in vivo swine model (10 healthy and 5 with chronic myocardial infarct) for ventricular PFA, collecting intracardiac electrograms, electro-anatomical maps, native T1-weighted and late gadolinium enhancement MRI, gross pathology, and histology. We used 1000-1500 V pulses, with 1-16 pulse trains to vary PFA dose.
View Article and Find Full Text PDFBMC Cardiovasc Disord
December 2024
Magdi Yacoub Heart Foundation, Cairo, Egypt.
Premature ventricular contractions (PVCs) are a common finding in patients with surgically repaired congenital heart defects including transposition of the great arteries (D-TGA). While often asymptomatic, PVCs can sometimes lead to palpitations, dyspnea, and hemodynamic compromise, requiring therapeutic intervention. The arterial switch operation is the preferred treatment for D-TGA, but these patients have a 2% incidence of ventricular arrhythmias and 1% incidence of sudden cardiac death post-operatively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!