A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Phosphoinositides in neuroexocytosis and neuronal diseases. | LitMetric

Phosphoinositides in neuroexocytosis and neuronal diseases.

Curr Top Microbiol Immunol

Queensland Brain Institute, The University of Queensland, Brisbane QLD 4072, Australia.

Published: April 2013

Phosphoinositides (PIs) are a family of phospholipids derived from phosphatidylinositol (PtdIns), whose location, synthesis, and degradation depend on specific PI kinases and phosphatases. PIs have emerged as fundamental regulators of secretory processes, such as neurotransmitter release, hormone secretion, and histamine release in allergic responses. In neurons and neuroendocrine cells, regulated secretion requires the calcium-dependent fusion of transmitter-containing vesicles with the plasma membrane. The role played by PIs in exocytosis is best exemplified by the Ca²⁺-dependent binding of vesicular Synaptotagmin1 to the plasma membrane PtdIns(4,5)P₂, and the recently demonstrated role of PtdIns(4,5)P₂ in the mobilization of secretory vesicles to the plasma membrane. New evidence has also recently emerged of an alternative PI pathway that can control exocytosis positively (via PtdIn3P) or negatively (via PtdIns(3,5)P₂). However, the positive or negative effectors for these pathways remain to be established. Reducing PtdIns(3,5)P₂ potentiates neuroexocytosis but leads to neuronal degeneration and has been linked to certain forms of Charcot-Marie-Tooth disease and amyotrophic lateral sclerosis. The goal of this review is to describe the role of PIs in neuroexocytosis and explore the current hypotheses linking these effects to human diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-94-007-5025-8_4DOI Listing

Publication Analysis

Top Keywords

plasma membrane
12
vesicles plasma
8
phosphoinositides neuroexocytosis
4
neuroexocytosis neuronal
4
neuronal diseases
4
diseases phosphoinositides
4
pis
4
phosphoinositides pis
4
pis family
4
family phospholipids
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!