This study investigated phospholipids complex (PC) loaded pellets of poorly permeable Salvianolic acid B (SalB), in which PC was to improve the liposolubility and permeability of SalB. Transmission electron microscopy observation, differential scanning calorimetry measurement, infrared spectroscopy analysis, n-octanol/water partition coefficient study, and foam cell permeability research were employed to prove the complex formation. Pellets containing SalB phospholipids complex (SalB-PC) were prepared via extrusion/spheronization technique. The optimal pellets obtained with 30% SalB-PC, 15% Kollidon®CL-SF, 15% Flowlac®100, and 40% MCC exhibited a very homogeneous size distribution, the shortest disintegration time, highest crushing force, appreciable spherical shape, and a fast drug release behavior. Following hydration, the droplet size distribution of SalB-PC pellets was nearly same to its PC (85.4±16 and 73.5±12nm). In vivo performance showed SalB-PC pellets presented significantly larger AUC(0-)(t), which was 0.58 times more than that of physical mixtures (PMs) and 1.57 times more than that of SalB pellets. C(max) of SalB-PC pellets were also increased by 0.26-fold and 0.80-fold as that of PMs and SalB pellets, respectively. In conclusion, extrusion/spheronization could be a suitable technique to prepare PC loaded pellets, which could effectively preserve the properties of PC to improve the permeability and bioavailability of highly water-soluble drug.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejpb.2012.09.021DOI Listing

Publication Analysis

Top Keywords

salb-pc pellets
12
pellets
10
salvianolic acid
8
phospholipids complex
8
loaded pellets
8
size distribution
8
salb pellets
8
salb
5
salb-pc
5
bioavailability foam
4

Similar Publications

This study investigated phospholipids complex (PC) loaded pellets of poorly permeable Salvianolic acid B (SalB), in which PC was to improve the liposolubility and permeability of SalB. Transmission electron microscopy observation, differential scanning calorimetry measurement, infrared spectroscopy analysis, n-octanol/water partition coefficient study, and foam cell permeability research were employed to prove the complex formation. Pellets containing SalB phospholipids complex (SalB-PC) were prepared via extrusion/spheronization technique.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!