Penicillium sp. strain that efficiently adsorbs lignosulfonate in the presence of sulfate ion.

J Biosci Bioeng

Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, Japan.

Published: March 2013

Lignin is one of the major water insoluble substances that support the physical properties of plants and can be solubilized by sulfite or alkaline treatment in accordance with pulpification. The lignin derivatives produced by both the sulfite and the kraft processes are called lignosulfonate (LS) and kraft lignin (KL), respectively, and both derivatives show a broad spectrum of optical absorbance from ultraviolet to visible light. When the spore suspension of an isolated Penicillium sp., Penicillium sp. A, was inoculated to a medium containing 0.1% commercial LS, absorbance at 480 nm (A480) almost completely disappeared after 5 days of cultivation. Maximum decolorization of the culture broth was observed when the microbe was cultured in the 0.8% LS medium reaching 88%, and the amount of LS removed was calculated to be 7 g/L. In a similar assay with the dark-liquid containing KL, 80% of the A480 of a 20% (v/v) dark-liquid medium disappeared after 5 days of culturing and the amount of KL removed was calculated to be 2.9 g/L. These values significantly exceeded the previously reported amounts with respect to substrate concentration and decolorization. Furthermore, since similar results were obtained in the cases of both LS and KL, it is expected that the present strain is able to non-specifically adsorb a wide range of lignin derivatives, because most of the colored substances were recovered in the culture sediments. Thus, the strain can be used to clean up waste fluids containing water soluble lignin derivatives, adsorb lignin derivatives in waste fluids before dehydration.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiosc.2012.09.019DOI Listing

Publication Analysis

Top Keywords

lignin derivatives
20
disappeared days
8
amount removed
8
removed calculated
8
waste fluids
8
lignin
6
derivatives
5
penicillium strain
4
strain efficiently
4
efficiently adsorbs
4

Similar Publications

Biopolymer-Derived Carbon Materials for Wearable Electronics.

Adv Mater

January 2025

Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.

Advanced carbon materials are widely utilized in wearable electronics. Nevertheless, the production of carbon materials from fossil-based sources raised concerns regarding their non-renewability, high energy consumption, and the consequent greenhouse gas emissions. Biopolymers, readily available in nature, offer a promising and eco-friendly alternative as a carbon source, enabling the sustainable production of carbon materials for wearable electronics.

View Article and Find Full Text PDF

Revealing Molecular Connections between Dissolved Organic Matter in Surface Water Sources and Their Cytotoxicity Influenced by Chlorination Disinfection.

Environ Sci Technol

January 2025

College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.

Dissolved organic matter (DOM) is the primary precursor of disinfection products (DBPs) during chlorination. However, the compositional characteristics of DOM transformation during the chlorination process in different source waters and its relationship to cytotoxicity remain understudied. Here, we used high-resolution mass spectrometry to evaluate chlorination-induced molecular-level changes in DOM derived from different surface water sources.

View Article and Find Full Text PDF

Kinetic and structural investigation of the 4-allyl syringol oxidase from Streptomyces cavernae.

Arch Biochem Biophys

January 2025

Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitaetsstrasse 150, 44780 Bochum, Germany.

4-Phenol oxidases are proposed to be involved in the utilization of lignin-derived aromatic compounds. While enzymes with selectivity towards 4-hydroxyphenyl and guaiacyl motifs are well described, we identified the first syringyl-specific oxidase from Streptomyces cavernae (Sc4ASO) only very recently. Here, in-depth studies were conducted to unravel the molecular origins of the outstanding selectivity of Sc4ASO.

View Article and Find Full Text PDF

Engineering yeast to produce fraxetin from ferulic acid and lignin.

Appl Microbiol Biotechnol

January 2025

Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.

Lignin, the most abundant renewable source of aromatic compounds on earth, remains underexploited in traditional biorefining. Fraxetin, a naturally occurring flavonoid, has garnered considerable attention in the scientific community due to its diverse and potent biological activities such as antimicrobial, anticancer, antioxidant, anti-inflammatory, and neurological protective actions. To enhance the green and value-added utilization of lignin, Saccharomyces cerevisiae was engineered as a cell factory to transform lignin derivatives to produce fraxetin.

View Article and Find Full Text PDF

Lignin Metabolism Is Crucial in the Plant Responses to (Shen) in L.

Plants (Basel)

January 2025

Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.

(Shen) (Hemiptera: Cicadellidae) is a devastating insect pest species of , significantly affecting the yield and quality of tea. Due to growing concerns over the irrational use of insecticides and associated food safety, it is crucial to better understand the innate resistance mechanism of tea trees to . This study aims to explore the responses of tea trees to different levels of infestation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!