Partial physicochemical properties and relative stability of polyhydroxylated dibenzofurans: theoretical and experimental study.

J Mol Graph Model

State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210046, PR China.

Published: September 2012

Polyhydroxylated dibenzofuran (PHODF) is an important degradation product of polychlorinated dibenzofuran (PCDF). Four types of hydrogen bonds (the one between a hydroxyl and the oxygen atom in the matrix, between hydroxyls at ortho positions, between the oxygen atom of hydroxyl at position 1 and the hydrogen atom of the matrix at position 9, and between hydroxyls at positions 1 and 9) exist in PHODFs. The energies of the hydrogen bonds were ascertained by comparing the two configurational isomers as approximately 8-11 kJ mol⁻¹, 16-21 kJ mol⁻¹, 5-8 kJ mol⁻¹ and 23-25 kJ mol⁻¹, respectively. An experiment was designed to verify the bond energies, and the entrance geometry on main paths was studied by AIM 2000 program. The most stable in each group of configurational isomers was ascertained on the basis of evaluating the effect of hydrogen bonds. Their thermodynamic properties (standard state entropy S°, standard enthalpy Δ(f)H° and standard Gibbs energy of formation Δ(f)G°) were calculated from the combination of density functional theory (DFT) at B3LYP/6-311G** level and isodesmic reactions. Octanol/water partition coefficients (log K(ow)) were calculated on line with molinspiration methodology based on group contributions. The number and position of hydroxyl substitution (N(PHOS)) can be a good indicator of these properties for all stable PHODF congeners. The configurations most likely to form are those with a hydrogen bond (Type IV). How intramolecular hydrogen bond influences ionization was also investigated and the first-order ionization constant for each stable conformation was obtained with the self-consistent reaction field (SCRF) method.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmgm.2012.05.008DOI Listing

Publication Analysis

Top Keywords

hydrogen bonds
12
oxygen atom
8
atom matrix
8
configurational isomers
8
hydrogen bond
8
hydrogen
6
partial physicochemical
4
physicochemical properties
4
properties relative
4
relative stability
4

Similar Publications

: The co-formulation of active pharmaceutical ingredients (APIs) is a growing strategy in biopharmaceutical development, particularly when it comes to improving solubility and bioavailability. This study explores a co-precipitation method to prepare co-formulated crystals of griseofulvin (GF) and dexamethasone (DXM), utilizing nanostructured, functionalized polylactic glycolic acid (PLGA) as a solubility enhancer. : An antisolvent precipitation technique was employed to incorporate PLGA at a 3% concentration into the co-formulated GF and DXM, referred to as DXM-GF-PLGA.

View Article and Find Full Text PDF

A Systematic Study of the Structural Properties of Technical Lignins.

Polymers (Basel)

January 2025

Postgraduate Program in Engineering of Processes and Technologies (PGEPROTEC), University of Caxias do Sul (UCS), Caxias do Sul 95070-560, Brazil.

Technical lignins are globally available and a sustainable feedstock. The unique properties of technical lignins suggest that these materials should have several industrial applications. The main proposal of this study is to evaluate the relationship between the structure and properties of two technical lignins.

View Article and Find Full Text PDF

Nanofibrous dressing materials with an antitumor function can potentially inhibit recurrence of melanoma following the surgical excision of skin tumors. In this study, hydrolyzed polyacrylonitrile (hPAN) nanofibers biofunctionalized with L-carnosine (CAR) and loaded with bio (CAR)-synthesized zinc oxide (ZnO) nanoparticles, ZnO/CAR-hPAN (hereafter called ZCPAN), were employed to develop an antimelanoma wound dressing. Inspired by the formulation of the commercial wound healing Zn-CAR complex, i.

View Article and Find Full Text PDF

Plasma Treatment of Metal Surfaces for Enhanced Bonding Strength of Metal-Polymer Hybrid Structures.

Polymers (Basel)

January 2025

Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University, Yongin 17104, Republic of Korea.

The adhesion between metals and polymers plays a pivotal role in numerous industrial applications, especially within the automotive and aerospace sectors, where there is a growing demand for materials that are both lightweight and durable. This study introduces an innovative technique to improve the adhesion between a metal and a polymer in hybrid structures through the synergistic use of anodization and plasma treatment. By forming a nanoporous oxide layer on aluminum surfaces, anodization enhances the interface for polymer binding.

View Article and Find Full Text PDF

Civil and geotechnical researchers are searching for economical alternatives to replace traditional soil stabilizers such as cement, which have negative impacts on the environment. Chitosan biopolymer has shown its capacity to efficiently minimize soil erosion, reduce hydraulic conductivity, and adsorb heavy metals in soil that is contaminated. This research used unconfined compression strength (UCS) to investigate the impact of chitosan content, long-term strength assessment, acid concentration, and temperature on the improvement of soil strength.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!