Astrocyte-specific deficiency of interleukin-6 and its receptor reveal specific roles in survival, body weight and behavior.

Brain Behav Immun

Animal Physiology Unit, Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain.

Published: January 2013

Interleukin-6 (IL-6) is a major cytokine which controls not only the immune system but also exhibits many other functions including effects in the central nervous system (CNS). IL-6 is known to be produced by different cells in the CNS, and all the major CNS do respond to IL-6, which makes it difficult to dissect the specific roles of each cell type when assessing the role of IL-6 in the brain. We have produced for the first time floxed mice for IL-6 and have crossed them with GFAP-Cre mice to delete IL-6 in astrocytes (Ast-IL-6 KO mice), and have compared their phenotype with that of mice with deletion of IL-6 receptor in astrocytes (Ast-IL6R KO mice). Our results indicate a major prosurvival role of the astrocyte IL-6 system at early ages (intrauterine life), which was also involved to various degrees in the control of adult body weight, locomotor activity, anxiety and exploratory behaviors. In some occasions deleting IL-6R in astrocytes mimicked the phenotype of Ast-IL-6 KO mice (i.e. activity), while in others the opposite was observed (i.e. exploration), suggesting autocrine and paracrine (presumably on neurons) roles of astrocyte IL-6. Our results suggest important roles of the astrocyte IL-6 system on normal brain physiology, in some cases totally unexpected from previous results with total IL-6 KO mice.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbi.2012.10.011DOI Listing

Publication Analysis

Top Keywords

astrocyte il-6
12
il-6
11
specific roles
8
body weight
8
ast-il-6 mice
8
il-6 system
8
roles astrocyte
8
mice
7
astrocyte-specific deficiency
4
deficiency interleukin-6
4

Similar Publications

Background: Recently, there has been substantial interest in investigating the role of short-chain fatty acids (SCFAs) and, medium chain fatty acids (MCFA) in the neuroinflammation associated with Alzheimer's disease (AD). Specifically, butyrate (SCFA) and lauric acid (MCFA) have demonstrated potential in alleviating neuroinflammation and reducing toxicity associated with amyloid proteins. Additionally, they have been found to enhance mitochondrial function and reduce neuronal hyperactivity.

View Article and Find Full Text PDF

The free-living amoeba (NF) causes a rare but lethal parasitic meningoencephalitis (PAM) in humans. Currently, this disease lacks effective treatments and the specific molecular mechanisms that govern NF pathogenesis and host brain response remain unknown. To address some of these issues, we sought to explore naturally existing virulence diversity within environmental NF isolates.

View Article and Find Full Text PDF

Background: Recent studies have identified hearing loss (HL) as a primary risk factor for Alzheimer's disease (AD) onset. However, the mechanisms linking HL to AD are not fully understood. This study explored the effects of drug-induced hearing loss (DIHL) on the expression of proteins associated with AD progression in mouse models.

View Article and Find Full Text PDF
Article Synopsis
  • Postoperative cognitive dysfunction (POCD) is a complication related to surgery involving cognitive decline, potentially influenced by neuroinflammation, ferroptosis, and mitochondrial fatty acid metabolism, particularly via the protein Carnitine palmitoyl transferase 1a (CPT1A).
  • The study used SVG P12 astrocytes to explore how CPT1A affects mitochondrial function, inflammation, and neuron damage by overexpressing or knocking down CPT1A and assessing the resulting changes in cellular conditions.
  • Results showed that higher levels of CPT1A improved mitochondrial function and reduced oxidative stress and inflammation in astrocytes, which benefitted neuron health, while these effects depended on functional mitochondrial respiration, as demonstrated when treatments disrupted this process.
View Article and Find Full Text PDF

Hydrogen inhalation exerts anti-seizure effects by preventing oxidative stress and inflammation in the hippocampus in a rat model of kainic acid-induced seizures.

Neurochem Int

December 2024

School of Medicine, Fu Jen Catholic University, New Taipei City, 24205, Taiwan; Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City, 33303, Taiwan. Electronic address:

Hydrogen gas (H) is an antioxidant with demonstrated neuroprotective efficacy. In this study, we administered H via inhalation to rats to evaluate its effects on seizures induced by kainic acid (KA) injection and the underlying mechanism. The animals were intraperitoneally injected with KA (15 mg/kg) to induce seizures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!