Secondary metabolite production from Streptomyces bacteria is primarily controlled at the level of transcription. Under normal laboratory conditions, the majority of the biosynthetic pathways of Streptomyces coelicolor are transcriptionally silent. These are often referred to as "cryptic" pathways and it is thought that they may encode the biosynthesis of yet unseen natural products with novel structures that may be valuable leads for therapeutics and as bioactive compounds. Sequencing of microbial genomes has supported the notion that cryptic pathways are widely distributed and likely to be a source of new chemical diversity. Hence, techniques that can reverse the silencing will be valuable for natural product screening as well as giving access to interesting new biology. We have focused on the identification of chemical elicitors capable of inducing expression of secondary metabolic gene clusters and to do so have drawn a parallel with fungal biology where inhibitors of histone acetylation change chromatin structure to derepress biosynthetic pathways. Similarly, we find that the same chemicals can also modify the expression of pathways in S. coelicolor and other Streptomyces spp. They variously act to increase expression from known pathways as well as inducing cryptic pathways. We hypothesize that nucleoid structure may be playing an analogous role to fungal chromatin structure in controlling transcriptional programs. Further, we speculate that microbial natural product collections could themselves be a rich source of new histone deacetylase inhibitors that have many applications in human health, such as anticancer therapeutics, beyond their traditional use as antimicrobials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/B978-0-12-404634-4.00018-8 | DOI Listing |
Pest Manag Sci
January 2025
College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
Background: The cotton-melon aphid, Aphis gossypii Glover, is a polyphagous pest damaging plants across over 100 families. It has multiple host-specialized lineages, including one colonizing Malvaceae (MA) and one colonizing Cucurbitaceae (CU). The mechanisms underlying these host relationships remain unknown.
View Article and Find Full Text PDFPest Manag Sci
January 2025
Dpto. Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.
Background: Chitin is a crucial component of fungal cell walls and an effective elicitor of plant immunity; however, phytopathogenic fungi have developed virulence mechanisms to counteract the activation of this plant defensive response. In this study, the molecular mechanism of chitin-induced suppression through effectors involved in chitin deacetylases (CDAs) and their degradation (EWCAs) was investigated with the idea of developing novel dsRNA-biofungicides to control the cucurbit powdery mildew caused by Podosphaera xanthii.
Results: The molecular mechanisms associated with the silencing effect of the PxCDA and PxEWCAs genes were first studied through dsRNA cotyledon infiltration assays, which revealed a ≈80% reduction in fungal biomass and a 50% decrease in gene expression.
Plant Sci
January 2025
ICAR-National Institute of Biotic Stress Management, Raipur, Chhattisgarh 495223, India. Electronic address:
Synthetic elicitors are non-toxic chemicals and safe for the environment when applied to plants in a variety of ways. They have been shown to interact with defense mechanisms of plants and cause the production of a wide range of valuable secondary metabolites, both volatile and non-volatile. Plants primed with chemical elicitors are indirectly induced to increase their resistance to herbivore attacks in addition to imparting tolerance or resistance to nearby plants against biotic stresses.
View Article and Find Full Text PDFInsects
November 2024
Biological Control of Pests Research Unit, United States Department of Agriculture-Agricultural Research Service, 59 Lee Road, Stoneville, MS 38776, USA.
The house cricket, (Linnaeus), is often used as a food source for the maintenance of imported fire ants under laboratory rearing. It was found that both red imported fire ants, Buren, and black imported fire ants, Forel, consumed most of the soft tissues of female crickets, but avoided their eggs by disposing of them on refuse piles. Bioassays using freshly collected cricket eggs showed that ants first retrieved eggs into their nests and then discarded them onto the refuse piles.
View Article and Find Full Text PDFInsects
November 2024
Department of Plant Biology, Ecology and Evolution, Oklahoma State University, Stillwater, OK 74078, USA.
Aphids are small, notorious insect pests that negatively impact plant health and agricultural productivity through direct damage, such as sap-sucking, and indirectly as vectors of plant viruses. Plants respond to aphid feeding with a variety of molecular mechanisms to mitigate damage. These responses are diverse and highly dynamic, functioning either independently or in combination.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!