Background: The hypothalamus is a brain structure involved in the neuroendocrine aspect of stress and anxiety. Evidence suggests that generalized anxiety disorder (GAD) and panic disorder (PD) might be accompanied by dysfunction of the hypothalamus-pituitary-adrenal axis (HPA), but so far structural alterations were not studied. We investigated hypothalamic volumes in patients with either GAD or PD and in healthy controls.
Methods: Twelve GAD patients, 11 PD patients and 21 healthy controls underwent a 1.5T MRI scan. Hypothalamus volumes were manually traced by a rater blind to subjects' identity. General linear model for repeated measures (GLM-RM) was used to compare groups on hypothalamic volumes, controlling for total intracranial volume, age and sex.
Results: The hypothalamus volume was significantly reduced (p=0.04) in GAD patients, with significant reductions in both the left (p=0.02) and right side (p=0.04). Patients with PD did not differ significantly (p=0.73). Anxiety scores were inversely correlated with hypothalamic volumes.
Limitations: The small sample size could reduce the generalizability of the results while the lack of stress hormone measurements renders functional assessment of the hypothalamus-pituitary-adrenal axis not feasible.
Conclusions: The present study showed decreased hypothalamic volumes in GAD patients but not in those with PD. Future longitudinal studies should combine volumetric data with measurements of stress hormones to better elucidate the role of the HPA axis in GAD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jad.2012.09.024 | DOI Listing |
PLoS One
January 2025
Department of Neurology, Weill Cornell Medicine, New York, NY, United States of America.
Testosterone, an essential sex steroid hormone, influences brain health by impacting neurophysiology and neuropathology throughout the lifespan in both genders. However, human research in this area is limited, particularly in women. This study examines the associations between testosterone levels, gray matter volume (GMV) and cerebral blood flow (CBF) in midlife individuals at risk for Alzheimer's disease (AD), according to sex and menopausal status.
View Article and Find Full Text PDFMol Cell Endocrinol
January 2025
This study investigated the consequences of perinatal exposure to Aroclor 1221 (A1221), a weakly estrogenic polychlorinated biphenyl (PCB) mixture and known endocrine-disrupting chemical (EDC), in female rats. Previous work has shown behavioral and physiological effects of A1221, and the current study extended this work to comprehensive transcriptomic profiling of two hypothalamic regions involved in the control of reproduction: the arcuate nucleus (ARC) and anteroventral periventricular nucleus (AVPV). Female Sprague-Dawley rats were fed a cookie treated with a small volume of A1221 (1 mg/kg) or vehicle (3% DMSO in sesame oil) during pregnancy from gestational days 8-18 and after birth from postnatal (P) days 1-21, exposing the offspring via placental and lactational transfer.
View Article and Find Full Text PDFJ Clin Med
December 2024
NYU Grossman Long Island School of Medicine, 101 Mineola Blvd., Mineola, NY 11501, USA.
A knowledge gap may exist when attempting to identify the pathogenetic mechanisms resulting in the syndrome of inappropriate antidiuretic hormone (SIADH) or hypotonic hyponatremia. Ectopic secretion of antidiuretic hormone [ADH] is the classic cause of SIADH. But another form of inappropriate secretion of ADH occurs when interleukin 6 is activated.
View Article and Find Full Text PDFJ Clin Med
December 2024
Department of Andrology and Reproductive Endocrinology, Medical University of Lodz, 90-419 Lodz, Poland.
The hormonal aspect of undescended testes (UDTs) in prepubertal boys, i.e., after mini-puberty, is poorly understood.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
Growth hormone (GH) signaling is essential for heart development. Both GH deficiency and excess raise cardiovascular risk. Human (h) and mouse (m) GH differ structurally and functionally: hGH binds both the GH receptor (GHR) and prolactin receptor (PRLR), whereas mGH binds only GHR; thus, there is the potential for differential effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!