Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Programmed cell death (PCD) is a ubiquitous feature of multicellular and unicellular organisms. Eukaryotic microbes use PCD to regulate the development of specialized cells and structures. Many different types of PCD occur, ranging from apoptosis-like cell death, programmed necrosis and autophagic death. An overview of cell death pathways is undertaken, highlighting new elements in the PCD molecular machinery. Examples of PCD in cellular differentiation are explored alongside evolutionary scenarios that could initiate and maintain PCD in microbes, including the evolution of multicellularity. The finding that defects in PCD can lead to antimicrobial drug resistance is also considered. Greater understanding of PCD and its role in differentiation offers new hope for discovery of therapeutic agents that manipulate endogenous cell suicide pathways.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mib.2012.09.005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!