Although distinct growth behaviors on different faces of hexagonal ice have long been suggested, their understanding on a molecular scale has been hampered due to experimental difficulties near interfaces. We present a molecular dynamics simulation study to unravel the molecular origin of anisotropy in the growth kinetics of hexagonal ice by visualizing the formation of transient water structures in the growing ice interface. During ice growth, the formation of transient structures and their rearrangement to the final ice configuration are observed irrespective of growth direction. However, we find that their structure and duration differ significantly depending on growth direction. In the direction perpendicular to the basal face of hexagonal ice along which growth occurs most slowly, a two-dimensional transient structure, which is formed by competing hexagonal and cubic arrangements within the same layer, persists for a significant period of time, contrasted with short-lived transient structures in other directions. This observation of such transient water structures and their rearrangement during ice growth provides a clear explanation of different growth rates on each face of hexagonal ice on a molecular scale.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4759113 | DOI Listing |
J Phys Chem Lett
December 2024
Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, People's Republic of China.
Ice formation from water vapor is a common phenomenon with significant implications for both natural ice formation and industrial processes. However, there remains controversy over how deposition frequency and substrate temperature affect the structural forms of deposition products and their formation processes. In this study, we employed molecular dynamics simulations to investigate the deposition process of water vapor onto a cold Au(001) substrate at different temperatures and deposition frequencies.
View Article and Find Full Text PDFJ Chem Phys
December 2024
Department of Physics, Brooklyn College of the City University of New York, Brooklyn, New York 11210, USA.
We perform classical molecular dynamics (MD) and path-integral MD (PIMD) simulations of H2O and D2O using the q-TIP4P/F model over a wide range of temperatures and pressures to study the nuclear quantum effects (NQEs) on (i) the vitrification of liquid water upon isobaric cooling at different pressures and (ii) pressure-induced transformations at constant temperature between low-density amorphous and high-density amorphous ice (LDA and HDA) and hexagonal ice Ih and HDA. Upon isobaric cooling, classical and quantum H2O and D2O vitrify into a continuum of intermediate amorphous ices (IA), with densities in-between those of LDA and HDA (depending on pressure). Importantly, the density of the IA varies considerably if NQEs are included (similar conclusions hold for ice Ih at all pressures studied).
View Article and Find Full Text PDFActa Crystallogr B Struct Sci Cryst Eng Mater
December 2024
Geochemical Research Center, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan.
The odd hydration number has so far been missing in the water-rich magnesium chloride hydrate series (MgCl·nHO). In this study, magnesium chloride heptahydrate, MgCl·7HO (or MgCl·7DO), which forms at high pressures above 2 GPa and high temperatures above 300 K, has been identified. Its structure has been determined by a combination of in-situ single-crystal X-ray diffraction at 2.
View Article and Find Full Text PDFACS Nano
November 2024
Department of Chemistry, Zhejiang University, Hangzhou 310028, P. R. China.
Multitwinned nanocrystals are commonly found in substances that preferentially adopt tetrahedral local arrangements, but not yet in water crystals. Ice nanocrystals are pivotal in cloud microphysics, and their surfaces become increasingly prominent in determining structure as crystal size decreases. Nevertheless, discussions on nanocrystal structures have predominantly centered on ice polymorphs observed in bulk: hexagonal (Ih), cubic (Ic), and stacking-disordered (Isd) ices.
View Article and Find Full Text PDFFaraday Discuss
September 2024
Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
Calculating sublimation enthalpies of molecular crystal polymorphs is relevant to a wide range of technological applications. However, predicting these quantities at first-principles accuracy - even with the aid of machine learning potentials - is a challenge that requires sub-kJ mol accuracy in the potential energy surface and finite-temperature sampling. We present an accurate and data-efficient protocol for training machine learning interatomic potentials by fine-tuning the foundational MACE-MP-0 model and showcase its capabilities on sublimation enthalpies and physical properties of ice polymorphs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!