Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The discrete nature of the partition function of a lattice-gas system can be exploited to build an efficient strategy for the evaluation of the chemical potential of a periodic lattice-gas with arbitrarily ranged interactions during a simulation in the canonical ensemble, with the need of no additional sampling as it were required instead by the Widom insertion/deletion approach. The present method is based on the main concepts of the small system grand ensemble [for details, see G. Soto-Campos, D. S. Corti, and H. Reiss, J. Chem. Phys. 108, 2563 (1998)], whose key idea is to study the properties of a sublattice (called small system) and of its complementary (the reservoir sublattice) as they were two separated subsystems. The accuracy of the measured chemical potential can be further improved by artificially "restoring" the missing connections among the reservoir sublattice sites located at the boundaries with the small system. We first illustrate the theory and then we compare μVT with NVT simulation results on several test systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4758757 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!