Flow cytometry has been shown to be an accurate and highly reproducible tool for the analysis of sperm function. The main objective of this study was to assess sperm function parameters in ejaculated alpaca sperm by flow cytometry. Semen samples were collected from six alpaca males and processed for flow cytometric analysis of sperm viability and plasma membrane integrity using SYBR-14⁄PI staining; acrosomal membrane integrity using FITC-conjugated Pisum Sativum Agglutinin⁄PI labelling; mitochondrial membrane potential (Δψm) by staining with JC-1 and DNA Fragmentation Index (DFI) by TUNEL. The results indicate that the mean value for sperm viability was 57 ± 8 %. Spermatozoa with intact acrosome membrane was 87.9 ± 5%, and viable sperm with intact acrosomal membrane was 46.8 ± 9%, high mitochondrial membrane potential (Δψm) was detected in 66.32 ± 9.51% of spermatozoa and mean DFI value was 0.91 ± 0.9%. The DFI was inversely correlated with high Δψm (p = 0.04; r = -0.41) and with plasma membrane integrity (p = 0.01; r = -0.47). To our knowledge, this is the first report of the assessment on the same sample of several parameters of sperm function in ejaculated alpaca sperm by flow cytometry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/rda.12096 | DOI Listing |
Reprod Domest Anim
February 2025
Veterinary Embryology Laboratory, Professional School of Veterinary Medicine, Universidad Nacional de San Antonio Abad del Cusco, Sicuani-Cusco, Peru.
Currently, incubators with a time-lapse system are widely used for in vitro embryo production in several species, however, their effect on alpaca embryo development compared to conventional incubators remains unknown. The aim of this study was to compare early in vitro embryo development in alpacas using a time-lapse incubator system versus a conventional incubator. Ovaries were obtained from a slaughterhouse and 1048 cumulus-oocyte complexes (COCs) were collected and in vitro matured for 26 h in either a time-lapse system (n = 542) or a conventional incubator (n = 542).
View Article and Find Full Text PDFEvolution
January 2025
Department of Biological Sciences, Duquesne University, Pittsburgh, PA, 15282, United States.
Male reproductive proteins frequently evolve rapidly in animals, potentially due to adaptive evolution driven by sperm competition, polyspermy avoidance, or pathogen defense. Alternatively, elevated rates of protein change may be due to relaxed constraint. The prostate-specific protease KLK3 has experienced dynamic evolution since its origin stemming from a gene duplication in the ancestor of all Old World primates, with instances of rapid evolution, stasis, and pseudogenization.
View Article and Find Full Text PDFJ Med Biochem
November 2024
university of belgrade, faculty of biology, centre for human molecular genetic.
Background: miRNAs have enormous potential to be used as diagnostic and prognostic markers as well as therapeutic targets in male infertility and diseases of the reproductive system. This study aimed to investigate the association between the two functional genetic variants in the hsa-miR27a (rs2910164) and hsa-miR-146a gene (rs895819) and male infertility in North Macedonian population, as well as to test their association with the values of major seminal parameters.
Methods: The case group included in this study comprised 158 men initially diagnosed with idiopathic male infertility.
Proc Biol Sci
January 2025
Faculty of Applied Information Technology, Nagasaki Institute of Applied Science, Nagasaki, Japan.
External female genital mutilation (EFGM) is a type of traumatic mating in which males damage female genitalia, resulting in the loss of female re-mating ability. This study examined whether sexual conflict underlies EFGM by examining the possible female reproductive costs from the decreased number of matings in spider, . The female typically receives sperm from a male twice during a mating bout.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
College of Chemical Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, P.R. China.
Transitions between chiral rotational locomotion modes occur in a variety of active individuals and populations, such as sidewinders, self-propelled chiral droplets, and dense bacterial suspensions. Despite recent progress in the study of active matter, general principles governing rotational chiral transition remain elusive. Here, we study, experimentally and theoretically, rotational locomotion and its chiral transition in a 2D polyacrylamide (PAAm)-based BZ gel driven by Belousov-Zhabotinsky reaction-diffusion waves.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!