Sequential multispectral imaging is an acquisition technique that involves collecting images of a target at different wavelengths, to compile a spectrum for each pixel. In surgical applications it suffers from low illumination levels and motion artefacts. A three-channel rigid endoscope system has been developed that allows simultaneous recording of stereoscopic and multispectral images. Salient features on the tissue surface may be tracked during the acquisition in the stereo cameras and, using multiple camera triangulation techniques, this information used to align the multispectral images automatically even though the tissue or camera is moving. This paper describes a detailed validation of the set-up in a controlled experiment before presenting the first in vivo use of the device in a porcine minimally invasive surgical procedure. Multispectral images of the large bowel were acquired and used to extract the relative concentration of haemoglobin in the tissue despite motion due to breathing during the acquisition. Using the stereoscopic information it was also possible to overlay the multispectral information on the reconstructed 3D surface. This experiment demonstrates the ability of this system for measuring blood perfusion changes in the tissue during surgery and its potential use as a platform for other sequential imaging modalities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3469985 | PMC |
http://dx.doi.org/10.1364/BOE.3.002567 | DOI Listing |
J Med Imaging (Bellingham)
January 2025
Okaya City Hospital, Division of Diagnostic Pathology, Okaya, Japan.
Purpose: The color of Papanicolaou-stained specimens is a crucial feature in cytology diagnosis. However, the quantification of color using digital images is challenging due to the variations in the staining process and characteristics of imaging equipment. The dye amount estimation of stained specimens is helpful for quantitatively interpreting the color based on a physical model.
View Article and Find Full Text PDFJ Imaging
December 2024
Radiology Department, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
This study investigates radiomic efficacy in post-surgical traumatic spinal cord injury (SCI), overcoming MRI limitations from metal artifacts to enhance diagnosis, severity assessment, and lesion characterization or prognosis and therapy guidance. Traumatic spinal cord injury (SCI) causes severe neurological deficits. While MRI allows qualitative injury evaluation, standard imaging alone has limitations for precise SCI diagnosis, severity stratification, and pathology characterization, which are needed to guide prognosis and therapy.
View Article and Find Full Text PDFSmall
December 2024
Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA.
Autophagy is a key biological process that has proven extremely difficult to detect noninvasively. To address this, an autophagy detecting nanoparticle (ADN) was recently developed, consisting of an iron oxide nanoparticle decorated with cathepsin-cleavable arginine-rich peptides bound to the near-infrared fluorochrome Cy5.5.
View Article and Find Full Text PDFAdv Mater
December 2024
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China.
Broadband photodetectors (PDs) have garnered significant attention due to their ability to detect optical signals across a wide wavelength range, with applications spanning military reconnaissance, environmental monitoring, and medical imaging. However, existing broadband detectors face several practical challenges, including limited detection range, uneven photoresponse, and difficult to distinguish multispectral signals. To address these limitations, this study presents a self-powered ultra-wide PD based on the BiSe/AlInAsSb heterojunction.
View Article and Find Full Text PDFLaser Photon Rev
October 2024
Harvard Medical School, Boston, MA 02114, USA; Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Cardiology, Erasmus Medical Center, Rotterdam GD3015, The Netherlands; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
Photoacoustic microscopy (PAM) is a high-resolution and non-invasive imaging modality that provides optical absorption contrast. By employing dual- or multiple-wavelength excitation, PAM extends its capabilities to offer valuable spectroscopic information. To achieve efficient multispectral PAM imaging, an essential requirement is a light source characterized by a high repetition rate and switching rate, a ≈microjoule pulse energy, and a ≈nanosecond pulse duration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!