We present a new method for extracting the effective attenuation coefficient and the diffusion coefficient from relative spectrally resolved cw radiance measurements using the diffusion approximation. The method is validated on both simulated and experimental radiance data sets using Intralipid-1% as a test platform. The effective attenuation coefficient is determined from a simple algebraic expression constructed from a ratio of two radiance measurements at two different source-detector separations and the same 90° angle. The diffusion coefficient is determined from another ratio constructed from two radiance measurements at two angles (0° and 180°) and the same source-detector separation. The conditions of the validity of the method as well as possible practical applications are discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3469994 | PMC |
http://dx.doi.org/10.1364/BOE.3.002371 | DOI Listing |
Arthroscopy is a minimally invasive surgical procedure used to diagnose and treat joint problems. The clinical workflow of arthroscopy typically involves inserting an arthroscope into the joint through a small incision, during which surgeons navigate and operate largely by relying on their visual assessment through the arthroscope. However, the arthroscope's restricted field of view and lack of depth perception pose challenges in navigating complex articular structures and achieving surgical precision during procedures.
View Article and Find Full Text PDFBMC Microbiol
January 2025
Department of Biomaterials and Biomedical Technology, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen, The Netherlands.
Otolaryngol Head Neck Surg
January 2025
Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, Washington, USA.
Objective: To validate the use of neural radiance fields (NeRF), a state-of-the-art computer vision technique, for rapid, high-fidelity 3-dimensional (3D) reconstruction in endoscopic sinus surgery (ESS).
Study Design: An experimental cadaveric pilot study.
Setting: Academic medical center.
PLoS One
December 2024
Group of Atmospheric Optics (GOA-UVa), Universidad de Valladolid, Valladolid, Spain.
This work introduces CAECENET, a new system capable of automatically retrieving columnar and vertically-resolved aerosol properties running the GRASP (Generalized Retrieval of Atmosphere and Surface Properties) algorithm using sun-sky photometer (aerosol optical depth, AOD; and sky radiance measurements) and ceilometer (range corrected signal; RCS) data as input. This method, so called GRASPpac, is implemented in CAECENET, which assimilates sun-sky photometers data from CÆLIS database and ceilometer data from ICENET database (Iberian Ceilometer Network). CAECENET allows for continuous and near-real-time monitoring of both vertical and columnar aerosol properties.
View Article and Find Full Text PDFPlants (Basel)
November 2024
Hunan Engineering Technology Research Center of Agricultural Rural Informatization, Changsha 410128, China.
Precise acquisition of potted plant traits has great theoretical significance and practical value for variety selection and guiding scientific cultivation practices. Although phenotypic analysis using two dimensional(2D) digital images is simple and efficient, leaf occlusion reduces the available phenotype information. To address the current challenge of acquiring sufficient non-destructive information from living potted plants, we proposed a three dimensional (3D) phenotyping pipeline that combines neural radiation field reconstruction with path analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!