The design and testing of a new, fully automated, calibration approach is described. The process was used to calibrate an image-guided diffuse optical spectroscopy system with 16 photomultiplier tubes (PMTs), but can be extended to any large array of optical detectors and associated imaging geometry. The design goals were accomplished by developing a routine for robust automated calibration of the multi-detector array within 45 minutes. Our process was able to characterize individual detectors to a median norm of the residuals of 0.03 V for amplitude and 4.4 degrees in phase and achieved less than 5% variation between all the detectors at the 95% confidence interval for equivalent measurements. Repeatability of the calibrated data from the imaging system was found to be within 0.05 V for amplitude and 0.2 degrees for phase, and was used to evaluate tissue-simulating phantoms in two separate imaging geometries. Spectroscopic imaging of total hemoglobin concentration was recovered to within 5% of the true value in both cases. Future work will focus on streamlining the technology for use in a clinical setting with expectations of achieving accurate quantification of suspicious lesions in the breast.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3470001 | PMC |
http://dx.doi.org/10.1364/BOE.3.002339 | DOI Listing |
BMC Ophthalmol
January 2025
Department of Retina and Vitreous, Narayana Nethralaya, #121/C, 1st R Block, Chord Road, Rajaji Nagar, Bengaluru, Karnataka, 560010, India.
Background: Accurate localization of premacular hemorrhages (PMHs) is crucial as treatment strategies vary significantly based on whether the hemorrhage resides within the vitreous gel, subhyaloid space, or beneath the internal limiting membrane (ILM). This report outlines the clinical features, diagnostic findings, and treatment outcomes in a patient diagnosed with a PMH secondary to suspected Valsalva retinopathy.
Methods: This is a retrospective interventional case report.
Angew Chem Int Ed Engl
January 2025
The University of Arizona, Chemistry and BioChemistry, 1306 E University Blvd, CSML 638, 85719, Tucson, UNITED STATES OF AMERICA.
Diffusion-limited kinetics is a key mechanistic debate when consecutive photoelectron transfer (conPET) is discussed in photoredox catalysis. In-situ generated organic photoactive radicals can access catalytic systems as reducing as alkaline metals that can activate remarkably stable bonds. However, in many cases, the extremely short-lived transient nature of these doublet state open-shell species has led to debatable mechanistic studies, hindering adoption and development.
View Article and Find Full Text PDFCureus
December 2024
Department of Ophthalmology, Xi'an No. 3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, CHN.
Choroidal nevus is the most common intraocular tumor, and most cases are benign and have no symptoms. However, choroidal nevus carries a low risk for transformation into melanoma, which is a highly aggressive and deadly cancer. In this case report, we present a male patient with blurred vision in his left eye for six months.
View Article and Find Full Text PDFDalton Trans
January 2025
Departamento de Química Inorgánica, Facultad de Química y Farmacia, Centro de Energía UC, Centro de Investigación en Nanotecnología y Materiales Avanzados CIEN-UC, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna, 4860, Santiago, Chile.
Recalcitrant pollutants are challenging to degrade during water treatment processes. Methylene blue (MB), a cationic dye, is particularly resistant to degradation and is environmentally persistent. Heterogeneous photocatalysis has emerged as a suitable strategy for removing such pollutants from water.
View Article and Find Full Text PDFJ Neurooncol
January 2025
Department of Neurosurgery, NYU Langone Health and NYU Grossman School of Medicine, 530 1st Avenue, Skirball Suite 8R, New York, NY, 10016, USA.
Unlabelled: QUESTIONS AND RECOMMENDATIONS FROM THE PRIOR VERSION OF THESE GUIDELINES WITHOUT CHANGE: TARGET POPULATION: Adult patients (age ≥ 18 years) who have suspected low-grade diffuse glioma.
Question: What are the optimal neuropathological techniques to diagnose low-grade diffuse glioma in the adult?
Recommendation: Level I Histopathological analysis of a representative surgical sample of the lesion should be used to provide the diagnosis of low-grade diffuse glioma. Level III Both frozen section and cytopathologic/smear evaluation should be used to aid the intra-operative assessment of low-grade diffuse glioma diagnosis.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!